

ONLINE ACCESS
Thank you for purchasing a new copy of Java™ How to Program, Tenth Edition, Late
Objects Version Your textbook includes 12 months of prepaid access to the book’s
Companion Website. This prepaid subscription provides you with full access to the
following student support areas:

• 	��VideoNotes (step-by-step video tutorials specifically designed to enhance the
programming concepts presented in this textbook)

•	 Source code
•	�� Premium web chapters and appendices

Use a coin to scratch off the coating and reveal your student access code.
Do not use a knife or other sharp object as it may damage the code.

To access the Java How to Program, Tenth Edition, Late Objects Version Companion
Website for the first time, you will need to register online using a computer with an
Internet connection and a web browser. The process takes just a couple of minutes and
only needs to be completed once.

1.	Go to http://www.pearsonhighered.com/deitel/

2.	 Click on Companion Website.

3.	 Click on the Register button.

4.	 On the registration page, enter your student access code* found beneath the
scratch-off panel. Do not type the dashes. You can use lower- or uppercase.

5.	 Follow the on-screen instructions. If you need help at any time during the online
registration process, simply click the Need Help? icon.

6.	 Once your personal Login Name and Password are confirmed, you can begin using
the Java How to Program, Tenth Edition, Late Objects Version Companion Website!

To log in after you have registered:

You only need to register for this Companion Website once. After that, you can log in any
time at http://www.pearsonhighered.com/deitel/ by providing your Login Name and
Password when prompted.

*Important: The access code can only be used once. This subscription is valid for 12
months upon activation and is not transferable. If this access code has already been
revealed, it may no longer be valid. If this is the case, you can purchase a subscription
at http://www.pearsonhighered.com/deitel/ by going to the Java How to Program,
Tenth Edition, Late Objects Version book and following the on-screen instructions.

Additional Comments from Recent Editions Reviewers

❝Updated to reflect the state of the art in Java technologies; deep and crystal clear explanations. The social-consciousness [Making a Difference]
exercises are something new and refreshing. Nice introduction to Java networking.~—José Antonio González Seco, Parliament of Andalusia

❝An easy-to-read conversational style. Clear code examples propel readers to become proficient in Java.~—Patty Kraft, San Diego State U.

❝The introduction of the class concept is clearly presented. A comprehensive overview of control structures and the pitfalls that befall new program-
mers. I applaud the authors for their topical research and illustrative examples. The arrays exercises are sophisticated and interesting. The clearest
explanation of pass-by-value and pass-by-reference that I’ve encountered. A logical progression of inheritance and the rationale for properly imple-
menting encapsulation in a system involving an inheritance hierarchy. The polymorphism and exception handling discussions are the best I’ve seen. An
excellent strings chapter. I like the [recursion] discussions of the ‘Lo Fractal’ and backtracking (which is useful in computer vision applications). A good
segue into a data structures course.~—Ric Heishman, George Mason University

❝Practical top-down, solution approach to teaching programming basics, covering pseudocode, algorithm development and activity diagrams. Of im-
mense value to practitioners and students of the object-oriented approach. Demystifies inheritance and polymorphism, and illustrates their use in getting
elegant, simple and maintainable code. The [optional] OO design case study presents the object-oriented approach in a simple manner, from require-
ments to Java code.~—Vinod Varma, Astro Infotech Private Limited

❝Easy-to-follow examples provide great teaching opportunities! I like the [optional] graphics track early in the book—the exercises will be fun for
the students. The concept of inheritance is built through examples and is very understandable. Great examples of polymorphism and interfaces. Great
comparison of recursion and iteration. The searching and sorting chapter is just right. A simplified explanation of Big O—the best I’ve read! I appreci-
ate the coverage of GUI threading issues. Great approach to Java web technologies.~—Sue McFarland Metzger, Villanova University

❝The Making a Difference exercises are inspired—they have a real contemporary feeling, both in their topics and in the way they encourage the
student to gather data from the Internet and bring it back to the question at hand.~—Vince O’Brien, Pearson Education (our publisher)

❝Most major concepts are illustrated by complete, annotated programs. Abundant exercises hone your understanding of the material. JDBC is
explained well.~—Shyamal Mitra, University of Texas at Austin

❝The best introductory textbook that I’ve encountered. I wish I had this book when I was learning how to program! Good introduction to the software
engineering process.~—Lance Andersen, Oracle Corporation

❝You’ll be well on your way to becoming a great Java programmer with this book.~—Peter Pilgrim, Java Champion, Consultant

❝Exceptionally well-written recursion chapter. Excellent descriptions of the search and sort algorithms and a gentle introduction to Big-O notation—
the examples give the code for the algorithms, and output that creates a picture of how the algorithms work.~

—Diana Franklin, University of California, Santa Barbara

❝Suitable for new programmers, intermediate-level programmers who want to hone their skills, and expert programmers who need a well-organized
reference. Event handling and layouts are well explained.~—Manjeet Rege, Rochester Institute of Technology

❝Beautiful collections of exercises—a nice illustration of how to use Java to generate impressive graphics.~—Amr Sabry, Indiana University

❝The [optional] OOD ATM case study puts many concepts from previous chapters together in a plan for a large program, showing the object-oriented
design process—the discussion of inheritance and polymorphism is especially good as the authors integrate these into the design.~

—Susan Rodger, Duke University

❝The transition from design to implementation is explained powerfully—the reader can easily understand the design issues and how to implement
them in Java.~—S. Sivakumar, Astro Infotech Private Limited

❝Comprehensive introduction to Java, now in its eighth major iteration. With clear descriptions, useful tips and hints, and well-thought-out exercises,
this is a great book for studying the world’s most popular programming language.~—Simon Ritter, Oracle Corporation

❝Comprehensive treatment of Java programming, covering both the latest version of the language and Java SE APIs, with its concepts and techniques
reinforced by a plethora of well-thought-through exercises.~—Dr. Danny Coward, Oracle Corporation

❝There are many Java programming books in the world. This textbook is the best one.~— Dr. Huiwei Guan, North Shore Community College

More Comments on Facing Page

http://www.pearsonhighered.com/deitel/
http://www.pearsonhighered.com/deitel/
http://www.pearsonhighered.com/deitel/

Deitel® Series Page
How To Program Series
Android How to Program, 2/E
C++ How to Program, 9/E
C How to Program, 7/E
Java™ How to Program, 10/E
Java™ How to Program, Late Objects Version, 10/E
Internet & World Wide Web How to Program, 5/E
Visual C++® 2008 How to Program, 2/E
Visual Basic® 2012 How to Program, 6/E
Visual C#® 2012 How to Program, 5/E

Simply Series
Simply C++: An App-Driven Tutorial Approach
Simply Java™ Programming: An App-Driven

Tutorial Approach
Simply C#: An App-Driven Tutorial Approach
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E

CourseSmart Web Books
www.deitel.com/books/CourseSmart/
C++ How to Program, 8/E and 9/E
Simply C++: An App-Driven Tutorial Approach
Java™ How to Program, 9/E and 10/E
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E

(continued from previous column)
Visual Basic® 2012 How to Program, 6/E
Visual Basic® 2010 How to Program, 5/E
Visual C#® 2012 How to Program, 5/E
Visual C#® 2010 How to Program, 4/E

Deitel® Developer Series
Android for Programmers: An App-Driven

Approach, 2/E, Volume 1
C for Programmers with an Introduction to C11
C++11 for Programmers
C# 2012 for Programmers
Dive Into® iOS 6 for Programmers: An App-Driven

Approach
Java™ for Programmers, 3/E
JavaScript for Programmers

LiveLessons Video Learning Products
www.deitel.com/books/LiveLessons/
Android App Development Fundamentals
C++ Fundamentals
Java™ Fundamentals
C# 2012 Fundamentals
C# 2010 Fundamentals
iOS® 6 App Development Fundamentals
JavaScript Fundamentals
Visual Basic® Fundamentals

To receive updates on Deitel publications, Resource Centers, training courses, partner offers and more,
please join the Deitel communities on

• Facebook®—facebook.com/DeitelFan
• Twitter®—@deitel
• Google+™—google.com/+DeitelFan
• YouTube™—youtube.com/DeitelTV
• LinkedIn®—linkedin.com/company/deitel-&-associates

and register for the free Deitel® Buzz Online e-mail newsletter at:
www.deitel.com/newsletter/subscribe.html

To communicate with the authors, send e-mail to:
deitel@deitel.com

For information on Dive-Into® Series on-site seminars offered by Deitel & Associates, Inc. worldwide,
write to us at deitel@deitel.com or visit:

www.deitel.com/training/
For continuing updates on Pearson/Deitel publications visit:

www.deitel.com
www.pearsonhighered.com/deitel/

Visit the Deitel Resource Centers that will help you master programming languages, software develop-
ment, Android and iOS app development, and Internet- and web-related topics:

www.deitel.com/ResourceCenters.html

www.deitel.com/books/CourseSmart/
www.deitel.com/books/LiveLessons/
www.deitel.com/newsletter/subscribe.html
www.deitel.com/training/
www.deitel.com
www.pearsonhighered.com/deitel/
www.deitel.com/ResourceCenters.html

Paul Deitel
Deitel & Associates, Inc.

Harvey Deitel
Deitel & Associates, Inc.

Editorial Director, ECS: Marcia Horton
Executive Editor: Tracy Johnson (Dunkelberger)
Director of Marketing: Christy Lesko
Marketing Manager: Yez Alayan
Marketing Assistant: Jon Bryant
Director of Program Management: Erin Gregg
Program Management—Team Lead: Scott Disanno
Program Manager: Carole Snyder
Project Management—Team Lead: Laura Burgess
Project Manager: Robert Engelhardt
Procurement Specialist: Linda Sager
Cover Design: Paul Deitel, Harvey Deitel, Abbey Deitel, Barbara Deitel, Marta Samsel
Permissions Supervisor: Michael Joyce
Permissions Administrator: Jenell Forschler
Director, Image Asset Services: Annie Atherton
Manager, Visual Research: Karen Sanatar
Cover Art: © Elina Elisseeva/Shutterstock
Media Project Manager: Renata Butera

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear
on page vi.

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The authors and pub-
lisher make no warranty of any kind, expressed or implied, with regard to these programs or to the documentation
contained in this book. The authors and publisher shall not be liable in any event for incidental or consequential dam-
ages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Copyright © 2015 and 2010 Pearson Education, Inc. All rights reserved. Manufactured in the United States of
America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River,
New Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data
On file

10 9 8 7 6 5 4 3 2 1

ISBN-10: 0-13-257565-5
ISBN-13: 978-0-13-257565-2

To Brian Goetz,
Oracle’s Java Language Architect and
Specification Lead for Java SE 8’s Project Lambda:

Your mentorship helped us make a better book.
Thank you for insisting that we get it right.

Paul and Harvey Deitel

Trademarks
DEITEL, the double-thumbs-up bug and DIVE INTO are registered trademarks of Deitel and Associates,
Inc.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Microsoft and/or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose. All
such documents and related graphics are provided “as is” without warranty of any kind. Microsoft and/
or its respective suppliers hereby disclaim all warranties and conditions with regard to this information,
including all warranties and conditions of merchantability, whether express, implied or statutory, fitness
for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective sup-
pliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting
from loss of use, data or profits, whether in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typograph-
ical errors. Changes are periodically added to the information herein. Microsoft and/or its respective sup-
pliers may make improvements and/or changes in the product(s) and/or the program(s) described herein
at any time. Partial screen shots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and
other countries. Screen shots and icons reprinted with permission from the Microsoft Corporation. This
book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.UNIX is a registered
trademark of The Open Group.

Apache is a trademark of The Apache Software Foundation.

CSS and XML are registered trademarks of the World Wide Web Consortium.

Firefox is a registered trademark of the Mozilla Foundation.

Google is a trademark of Google, Inc.

Mac and OS X are trademarks of Apple Inc., registered in the U.S. and other countries.

Linux is a registered trademark of Linus Torvalds. All trademarks are property of their respective owners.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

Chapters 26–34 and Appendices F–N are PDF documents posted online at the book’s
Companion Website (located at www.pearsonhighered.com/deitel/). See the inside
front cover for information on accessing the Companion Website.

Foreword xxiii

Preface xxv

Before You Begin xxxix

1 Introduction to Computers, the Internet and Java 1
1.1 Introduction 2
1.2 Hardware and Software 4

1.2.1 Moore’s Law 4
1.2.2 Computer Organization 5

1.3 Data Hierarchy 6
1.4 Machine Languages, Assembly Languages and High-Level Languages 9
1.5 Introduction to Object Technology 10

1.5.1 The Automobile as an Object 10
1.5.2 Methods and Classes 11
1.5.3 Instantiation 11
1.5.4 Reuse 11
1.5.5 Messages and Method Calls 11
1.5.6 Attributes and Instance Variables 11
1.5.7 Encapsulation and Information Hiding 12
1.5.8 Inheritance 12
1.5.9 Interfaces 12
1.5.10 Object-Oriented Analysis and Design (OOAD) 12
1.5.11 The UML (Unified Modeling Language) 13

1.6 Operating Systems 13
1.6.1 Windows—A Proprietary Operating System 13
1.6.2 Linux—An Open-Source Operating System 14
1.6.3 Android 14

1.7 Programming Languages 15
1.8 Java 17
1.9 A Typical Java Development Environment 17
1.10 Test-Driving a Java Application 21

Contents

www.pearsonhighered.com/deitel/

viii Contents

1.11 Internet and World Wide Web 25
1.11.1 The Internet: A Network of Networks 26
1.11.2 The World Wide Web: Making the Internet User-Friendly 26
1.11.3 Web Services and Mashups 26
1.11.4 Ajax 27
1.11.5 The Internet of Things 27

1.12 Software Technologies 28
1.13 Keeping Up-to-Date with Information Technologies 30

2 Introduction to Java Applications;
Input/Output and Operators 34

2.1 Introduction 35
2.2 Your First Program in Java: Printing a Line of Text 35
2.3 Modifying Your First Java Program 41
2.4 Displaying Text with printf 43
2.5 Another Application: Adding Integers 44

2.5.1 import Declarations 45
2.5.2 Declaring Class Addition 46
2.5.3 Declaring and Creating a Scanner to Obtain User Input

from the Keyboard 46
2.5.4 Declaring Variables to Store Integers 47
2.5.5 Prompting the User for Input 48
2.5.6 Obtaining an int as Input from the User 48
2.5.7 Prompting for and Inputting a Second int 49
2.5.8 Using Variables in a Calculation 49
2.5.9 Displaying the Result of the Calculation 49
2.5.10 Java API Documentation 49

2.6 Memory Concepts 50
2.7 Arithmetic 51
2.8 Decision Making: Equality and Relational Operators 54
2.9 (Optional) GUI and Graphics Case Study: Using Dialog Boxes 58
2.10 Wrap-Up 61

3 Control Statements: Part 1;
Assignment, ++ and -- Operators 72

3.1 Introduction 73
3.2 Algorithms 73
3.3 Pseudocode 74
3.4 Control Structures 74
3.5 if Single-Selection Statement 76
3.6 if…else Double-Selection Statement 77
3.7 while Repetition Statement 82
3.8 Formulating Algorithms: Counter-Controlled Repetition 83
3.9 Formulating Algorithms: Sentinel-Controlled Repetition 87

Contents ix

3.10 Formulating Algorithms: Nested Control Statements 95
3.11 Compound Assignment Operators 99
3.12 Increment and Decrement Operators 100
3.13 Primitive Types 103
3.14 (Optional) GUI and Graphics Case Study: Creating Simple Drawings 103
3.15 Wrap-Up 107

4 Control Statements: Part 2; Logical Operators 121
4.1 Introduction 122
4.2 Essentials of Counter-Controlled Repetition 122
4.3 for Repetition Statement 124
4.4 Examples Using the for Statement 128
4.5 do…while Repetition Statement 132
4.6 switch Multiple-Selection Statement 134
4.7 break and continue Statements 140
4.8 Logical Operators 142
4.9 Structured Programming Summary 147
4.10 (Optional) GUI and Graphics Case Study: Drawing Rectangles and Ovals 152
4.11 Wrap-Up 154

5 Methods 164
5.1 Introduction 165
5.2 Program Modules in Java 165
5.3 static Methods, static Variables and Class Math 167
5.4 Declaring Methods 169
5.5 Notes on Declaring and Using Methods 173
5.6 Method-Call Stack and Stack Frames 174
5.7 Argument Promotion and Casting 175
5.8 Java API Packages 176
5.9 Case Study: Secure Random-Number Generation 178
5.10 Case Study: A Game of Chance; Introducing enum Types 183
5.11 Scope of Declarations 187
5.12 Method Overloading 189
5.13 (Optional) GUI and Graphics Case Study: Colors and Filled Shapes 192
5.14 Wrap-Up 195

6 Arrays and ArrayLists 208
6.1 Introduction 209
6.2 Primitive Types vs. Reference Types 210
6.3 Arrays 210
6.4 Declaring and Creating Arrays 212
6.5 Examples Using Arrays 213

6.5.1 Creating and Initializing an Array 213

x Contents

6.5.2 Using an Array Initializer 214
6.5.3 Calculating the Values to Store in an Array 215
6.5.4 Summing the Elements of an Array 217
6.5.5 Using Bar Charts to Display Array Data Graphically 217
6.5.6 Using the Elements of an Array as Counters 219
6.5.7 Using Arrays to Analyze Survey Results 220

6.6 Exception Handling: Processing the Incorrect Response 222
6.6.1 The try Statement 222
6.6.2 Executing the catch Block 222
6.6.3 toString Method of the Exception Parameter 223

6.7 Enhanced for Statement 223
6.8 Passing Arrays to Methods 224
6.9 Pass-By-Value vs. Pass-By-Reference 227
6.10 Multidimensional Arrays 228
6.11 Variable-Length Argument Lists 231
6.12 Using Command-Line Arguments 233
6.13 Class Arrays 235
6.14 Introduction to Collections and Class ArrayList 238
6.15 (Optional) GUI and Graphics Case Study: Drawing Arcs 241
6.16 Wrap-Up 244

7 Introduction to Classes and Objects 265
7.1 Introduction 266
7.2 Instance Variables, set Methods and get Methods 267

7.2.1 Account Class with an Instance Variable, a set Method and
a get Method 267

7.2.2 AccountTest Class That Creates and Uses an Object of
Class Account 269

7.2.3 Compiling and Executing an App with Multiple Classes 272
7.2.4 Account UML Class Diagram with an Instance Variable and

set and get Methods 272
7.2.5 Additional Notes on This Example 274
7.2.6 Software Engineering with private Instance Variables and

public set and get Methods 274
7.3 Default and Explicit Initialization for Instance Variables 276
7.4 Account Class: Initializing Objects with Constructors 276

7.4.1 Declaring an Account Constructor for Custom Object
Initialization 276

7.4.2 Class AccountTest: Initializing Account Objects When
They’re Created 277

7.5 Account Class with a Balance; Floating-Point Numbers 279
7.5.1 Account Class with a balance Instance Variable of Type double 279
7.5.2 AccountTest Class to Use Class Account 281

7.6 Case Study: Card Shuffling and Dealing Simulation 284
7.7 Case Study: Class GradeBook Using an Array to Store Grades 289

Contents xi

7.8 Case Study: Class GradeBook Using a Two-Dimensional Array 294
7.9 Wrap-Up 300

8 Classes and Objects: A Deeper Look 307
8.1 Introduction 308
8.2 Time Class Case Study 308
8.3 Controlling Access to Members 313
8.4 Referring to the Current Object’s Members with the this Reference 314
8.5 Time Class Case Study: Overloaded Constructors 316
8.6 Default and No-Argument Constructors 322
8.7 Notes on Set and Get Methods 322
8.8 Composition 324
8.9 enum Types 327
8.10 Garbage Collection 329
8.11 static Class Members 330
8.12 static Import 334
8.13 final Instance Variables 335
8.14 Package Access 336
8.15 Using BigDecimal for Precise Monetary Calculations 337
8.16 (Optional) GUI and Graphics Case Study: Using Objects with Graphics 340
8.17 Wrap-Up 344

9 Object-Oriented Programming: Inheritance 352
9.1 Introduction 353
9.2 Superclasses and Subclasses 354
9.3 protected Members 356
9.4 Relationship Between Superclasses and Subclasses 357

9.4.1 Creating and Using a CommissionEmployee Class 357
9.4.2 Creating and Using a BasePlusCommissionEmployee Class 363
9.4.3 Creating a CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy 368
9.4.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance

Hierarchy Using protected Instance Variables 371
9.4.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance

Hierarchy Using private Instance Variables 374
9.5 Constructors in Subclasses 379
9.6 Class Object 379
9.7 (Optional) GUI and Graphics Case Study: Displaying Text and

Images Using Labels 380
9.8 Wrap-Up 383

10 Object-Oriented Programming:
Polymorphism and Interfaces 387

10.1 Introduction 388

xii Contents

10.2 Polymorphism Examples 390
10.3 Demonstrating Polymorphic Behavior 391
10.4 Abstract Classes and Methods 393
10.5 Case Study: Payroll System Using Polymorphism 396

10.5.1 Abstract Superclass Employee 397
10.5.2 Concrete Subclass SalariedEmployee 399
10.5.3 Concrete Subclass HourlyEmployee 401
10.5.4 Concrete Subclass CommissionEmployee 403
10.5.5 Indirect Concrete Subclass BasePlusCommissionEmployee 405
10.5.6 Polymorphic Processing, Operator instanceof and Downcasting 406

10.6 Allowed Assignments Between Superclass and Subclass Variables 411
10.7 final Methods and Classes 411
10.8 A Deeper Explanation of Issues with Calling Methods from Constructors 412
10.9 Creating and Using Interfaces 413

10.9.1 Developing a Payable Hierarchy 414
10.9.2 Interface Payable 415
10.9.3 Class Invoice 416
10.9.4 Modifying Class Employee to Implement Interface Payable 418
10.9.5 Modifying Class SalariedEmployee for Use in the Payable

Hierarchy 420
10.9.6 Using Interface Payable to Process Invoices and Employees

Polymorphically 422
10.9.7 Some Common Interfaces of the Java API 423

10.10 Java SE 8 Interface Enhancements 424
10.10.1 default Interface Methods 424
10.10.2 static Interface Methods 425
10.10.3 Functional Interfaces 425

10.11 (Optional) GUI and Graphics Case Study: Drawing with Polymorphism 425
10.12 Wrap-Up 428

11 Exception Handling: A Deeper Look 433
11.1 Introduction 434
11.2 Example: Divide by Zero without Exception Handling 435
11.3 Example: Handling ArithmeticExceptions and

InputMismatchExceptions 437
11.4 When to Use Exception Handling 443
11.5 Java Exception Hierarchy 443
11.6 finally Block 446
11.7 Stack Unwinding and Obtaining Information from an Exception Object 451
11.8 Chained Exceptions 453
11.9 Declaring New Exception Types 456
11.10 Preconditions and Postconditions 457
11.11 Assertions 457
11.12 try-with-Resources: Automatic Resource Deallocation 459
11.13 Wrap-Up 459

Contents xiii

12 GUI Components: Part 1 465
12.1 Introduction 466
12.2 Java’s Nimbus Look-and-Feel 467
12.3 Simple GUI-Based Input/Output with JOptionPane 468
12.4 Overview of Swing Components 471
12.5 Displaying Text and Images in a Window 473
12.6 Text Fields and an Introduction to Event Handling with Nested Classes 477
12.7 Common GUI Event Types and Listener Interfaces 483
12.8 How Event Handling Works 485
12.9 JButton 487
12.10 Buttons That Maintain State 490

12.10.1 JCheckBox 491
12.10.2 JRadioButton 493

12.11 JComboBox; Using an Anonymous Inner Class for Event Handling 496
12.12 JList 500
12.13 Multiple-Selection Lists 503
12.14 Mouse Event Handling 505
12.15 Adapter Classes 510
12.16 JPanel Subclass for Drawing with the Mouse 514
12.17 Key Event Handling 517
12.18 Introduction to Layout Managers 520

12.18.1 FlowLayout 522
12.18.2 BorderLayout 524
12.18.3 GridLayout 528

12.19 Using Panels to Manage More Complex Layouts 530
12.20 JTextArea 531
12.21 Wrap-Up 534

13 Graphics and Java 2D 547
13.1 Introduction 548
13.2 Graphics Contexts and Graphics Objects 550
13.3 Color Control 551
13.4 Manipulating Fonts 558
13.5 Drawing Lines, Rectangles and Ovals 563
13.6 Drawing Arcs 567
13.7 Drawing Polygons and Polylines 570
13.8 Java 2D API 573
13.9 Wrap-Up 580

14 Strings, Characters and Regular Expressions 588
14.1 Introduction 589
14.2 Fundamentals of Characters and Strings 589
14.3 Class String 590

14.3.1 String Constructors 590

xiv Contents

14.3.2 String Methods length, charAt and getChars 591
14.3.3 Comparing Strings 592
14.3.4 Locating Characters and Substrings in Strings 597
14.3.5 Extracting Substrings from Strings 599
14.3.6 Concatenating Strings 600
14.3.7 Miscellaneous String Methods 600
14.3.8 String Method valueOf 602

14.4 Class StringBuilder 603
14.4.1 StringBuilder Constructors 604
14.4.2 StringBuilder Methods length, capacity, setLength and

ensureCapacity 604
14.4.3 StringBuilder Methods charAt, setCharAt, getChars

and reverse 606
14.4.4 StringBuilder append Methods 607
14.4.5 StringBuilder Insertion and Deletion Methods 609

14.5 Class Character 610
14.6 Tokenizing Strings 615
14.7 Regular Expressions, Class Pattern and Class Matcher 616
14.8 Wrap-Up 625

15 Files, Streams and Object Serialization 636
15.1 Introduction 637
15.2 Files and Streams 637
15.3 Using NIO Classes and Interfaces to Get File and Directory Information 639
15.4 Sequential-Access Text Files 643

15.4.1 Creating a Sequential-Access Text File 643
15.4.2 Reading Data from a Sequential-Access Text File 647
15.4.3 Case Study: A Credit-Inquiry Program 649
15.4.4 Updating Sequential-Access Files 653

15.5 Object Serialization 654
15.5.1 Creating a Sequential-Access File Using Object Serialization 655
15.5.2 Reading and Deserializing Data from a Sequential-Access File 660

15.6 Opening Files with JFileChooser 662
15.7 (Optional) Additional java.io Classes 665

15.7.1 Interfaces and Classes for Byte-Based Input and Output 665
15.7.2 Interfaces and Classes for Character-Based Input and Output 667

15.8 Wrap-Up 668

16 Generic Collections 676
16.1 Introduction 677
16.2 Collections Overview 677
16.3 Type-Wrapper Classes 679
16.4 Autoboxing and Auto-Unboxing 679
16.5 Interface Collection and Class Collections 679

Contents xv

16.6 Lists 680
16.6.1 ArrayList and Iterator 681
16.6.2 LinkedList 683

16.7 Collections Methods 688
16.7.1 Method sort 689
16.7.2 Method shuffle 692
16.7.3 Methods reverse, fill, copy, max and min 694
16.7.4 Method binarySearch 696
16.7.5 Methods addAll, frequency and disjoint 698

16.8 Stack Class of Package java.util 700
16.9 Class PriorityQueue and Interface Queue 702
16.10 Sets 703
16.11 Maps 706
16.12 Properties Class 710
16.13 Synchronized Collections 713
16.14 Unmodifiable Collections 713
16.15 Abstract Implementations 714
16.16 Wrap-Up 714

17 Java SE 8 Lambdas and Streams 721
17.1 Introduction 722
17.2 Functional Programming Technologies Overview 723

17.2.1 Functional Interfaces 724
17.2.2 Lambda Expressions 725
17.2.3 Streams 726

17.3 IntStream Operations 728
17.3.1 Creating an IntStream and Displaying Its Values with the

forEach Terminal Operation 730
17.3.2 Terminal Operations count, min, max, sum and average 731
17.3.3 Terminal Operation reduce 731
17.3.4 Intermediate Operations: Filtering and Sorting IntStream Values 733
17.3.5 Intermediate Operation: Mapping 734
17.3.6 Creating Streams of ints with IntStream Methods range

and rangeClosed 735
17.4 Stream<Integer> Manipulations 735

17.4.1 Creating a Stream<Integer> 736
17.4.2 Sorting a Stream and Collecting the Results 737
17.4.3 Filtering a Stream and Storing the Results for Later Use 737
17.4.4 Filtering and Sorting a Stream and Collecting the Results 737
17.4.5 Sorting Previously Collected Results 737

17.5 Stream<String> Manipulations 738
17.5.1 Mapping Strings to Uppercase Using a Method Reference 739
17.5.2 Filtering Strings Then Sorting Them in Case-Insensitive

Ascending Order 740

xvi Contents

17.5.3 Filtering Strings Then Sorting Them in Case-Insensitive
Descending Order 740

17.6 Stream<Employee> Manipulations 740
17.6.1 Creating and Displaying a List<Employee> 742
17.6.2 Filtering Employees with Salaries in a Specified Range 743
17.6.3 Sorting Employees By Multiple Fields 744
17.6.4 Mapping Employees to Unique Last Name Strings 746
17.6.5 Grouping Employees By Department 747
17.6.6 Counting the Number of Employees in Each Department 748
17.6.7 Summing and Averaging Employee Salaries 748

17.7 Creating a Stream<String> from a File 750
17.8 Generating Streams of Random Values 753
17.9 Lambda Event Handlers 755
17.10 Additional Notes on Java SE 8 Interfaces 755
17.11 Java SE 8 and Functional Programming Resources 756
17.12 Wrap-Up 756

18 Recursion 768
18.1 Introduction 769
18.2 Recursion Concepts 770
18.3 Example Using Recursion: Factorials 771
18.4 Reimplementing Class FactorialCalculator Using Class BigInteger 773
18.5 Example Using Recursion: Fibonacci Series 775
18.6 Recursion and the Method-Call Stack 778
18.7 Recursion vs. Iteration 779
18.8 Towers of Hanoi 781
18.9 Fractals 783

18.9.1 Koch Curve Fractal 783
18.9.2 (Optional) Case Study: Lo Feather Fractal 784

18.10 Recursive Backtracking 793
18.11 Wrap-Up 794

19 Searching, Sorting and Big O 802
19.1 Introduction 803
19.2 Linear Search 804
19.3 Big O Notation 806

19.3.1 O(1) Algorithms 806
19.3.2 O(n) Algorithms 807
19.3.3 O(n2) Algorithms 807
19.3.4 Big O of the Linear Search 808

19.4 Binary Search 808
19.4.1 Binary Search Implementation 809
19.4.2 Efficiency of the Binary Search 812

19.5 Sorting Algorithms 812

Contents xvii

19.6 Selection Sort 813
19.6.1 Selection Sort Implementation 813
19.6.2 Efficiency of the Selection Sort 816

19.7 Insertion Sort 816
19.7.1 Insertion Sort Implementation 817
19.7.2 Efficiency of the Insertion Sort 819

19.8 Merge Sort 819
19.8.1 Merge Sort Implementation 820
19.8.2 Efficiency of the Merge Sort 824

19.9 Big O Summary for This Chapter’s Searching and Sorting Algorithms 825
19.10 Wrap-Up 826

20 Generic Classes and Methods 831
20.1 Introduction 832
20.2 Motivation for Generic Methods 832
20.3 Generic Methods: Implementation and Compile-Time Translation 834
20.4 Additional Compile-Time Translation Issues: Methods That Use a

Type Parameter as the Return Type 837
20.5 Overloading Generic Methods 840
20.6 Generic Classes 841
20.7 Raw Types 848
20.8 Wildcards in Methods That Accept Type Parameters 852
20.9 Wrap-Up 856

21 Custom Generic Data Structures 861
21.1 Introduction 862
21.2 Self-Referential Classes 863
21.3 Dynamic Memory Allocation 863
21.4 Linked Lists 864

21.4.1 Singly Linked Lists 864
21.4.2 Implementing a Generic List Class 865
21.4.3 Generic Classes ListNode and List 870
21.4.4 Class ListTest 870
21.4.5 List Method insertAtFront 870
21.4.6 List Method insertAtBack 871
21.4.7 List Method removeFromFront 872
21.4.8 List Method removeFromBack 873
21.4.9 List Method print 874
21.4.10 Creating Your Own Packages 874

21.5 Stacks 878
21.6 Queues 882
21.7 Trees 885
21.8 Wrap-Up 892

xviii Contents

22 GUI Components: Part 2 903
22.1 Introduction 904
22.2 JSlider 904
22.3 Understanding Windows in Java 908
22.4 Using Menus with Frames 909
22.5 JPopupMenu 917
22.6 Pluggable Look-and-Feel 920
22.7 JDesktopPane and JInternalFrame 925
22.8 JTabbedPane 928
22.9 BoxLayout Layout Manager 930
22.10 GridBagLayout Layout Manager 934
22.11 Wrap-Up 944

23 Concurrency 949
23.1 Introduction 950
23.2 Thread States and Life Cycle 952

23.2.1 New and Runnable States 953
23.2.2 Waiting State 953
23.2.3 Timed Waiting State 953
23.2.4 Blocked State 953
23.2.5 Terminated State 953
23.2.6 Operating-System View of the Runnable State 954
23.2.7 Thread Priorities and Thread Scheduling 954
23.2.8 Indefinite Postponement and Deadlock 955

23.3 Creating and Executing Threads with the Executor Framework 955
23.4 Thread Synchronization 959

23.4.1 Immutable Data 960
23.4.2 Monitors 960
23.4.3 Unsynchronized Mutable Data Sharing 961
23.4.4 Synchronized Mutable Data Sharing—Making Operations Atomic 966

23.5 Producer/Consumer Relationship without Synchronization 968
23.6 Producer/Consumer Relationship: ArrayBlockingQueue 976
23.7 (Advanced) Producer/Consumer Relationship with synchronized,

wait, notify and notifyAll 979
23.8 (Advanced) Producer/Consumer Relationship: Bounded Buffers 986
23.9 (Advanced) Producer/Consumer Relationship: The Lock and

Condition Interfaces 994
23.10 Concurrent Collections 1001
23.11 Multithreading with GUI: SwingWorker 1003

23.11.1 Performing Computations in a Worker Thread:
Fibonacci Numbers 1004

23.11.2 Processing Intermediate Results: Sieve of Eratosthenes 1010
23.12 sort/parallelSort Timings with the Java SE 8 Date/Time API 1017
23.13 Java SE 8: Sequential vs. Parallel Streams 1019
23.14 (Advanced) Interfaces Callable and Future 1022

Contents xix

23.15 (Advanced) Fork/Join Framework 1026
23.16 Wrap-Up 1026

24 Accessing Databases with JDBC 1037
24.1 Introduction 1038
24.2 Relational Databases 1039
24.3 A books Database 1040
24.4 SQL 1044

24.4.1 Basic SELECT Query 1044
24.4.2 WHERE Clause 1045
24.4.3 ORDER BY Clause 1047
24.4.4 Merging Data from Multiple Tables: INNER JOIN 1048
24.4.5 INSERT Statement 1050
24.4.6 UPDATE Statement 1051
24.4.7 DELETE Statement 1052

24.5 Setting up a Java DB Database 1052
24.5.1 Creating the Chapter’s Databases on Windows 1053
24.5.2 Creating the Chapter’s Databases on Mac OS X 1054
24.5.3 Creating the Chapter’s Databases on Linux 1055

24.6 Manipulating Databases with JDBC 1055
24.6.1 Connecting to and Querying a Database 1055
24.6.2 Querying the books Database 1059

24.7 RowSet Interface 1072
24.8 PreparedStatements 1074
24.9 Stored Procedures 1090
24.10 Transaction Processing 1090
24.11 Wrap-Up 1091

25 JavaFX GUI: Part 1 1099
25.1 Introduction 1100
25.2 JavaFX Scene Builder and the NetBeans IDE 1101
25.3 JavaFX App Window Structure 1102
25.4 Welcome App—Displaying Text and an Image 1103

25.4.1 Creating the App’s Project 1103
25.4.2 NetBeans Projects Window—Viewing the Project Contents 1105
25.4.3 Adding an Image to the Project 1106
25.4.4 Opening JavaFX Scene Builder from NetBeans 1106
25.4.5 Changing to a VBox Layout Container 1107
25.4.6 Configuring the VBox Layout Container 1108
25.4.7 Adding and Configuring a Label 1108
25.4.8 Adding and Configuring an ImageView 1108
25.4.9 Running the Welcome App 1109

25.5 Tip Calculator App—Introduction to Event Handling 1110
25.5.1 Test-Driving the Tip Calculator App 1111

xx Contents

25.5.2 Technologies Overview 1111
25.5.3 Building the App’s GUI 1114
25.5.4 TipCalculator Class 1118
25.5.5 TipCalculatorController Class 1120

25.6 Features Covered in the Online JavaFX Chapters 1125
25.7 Wrap-Up 1126

Chapters on the Web 1133

A Operator Precedence Chart 1135

B ASCII Character Set 1137

C Keywords and Reserved Words 1138

D Primitive Types 1139

E Using the Debugger 1140
E.1 Introduction 1141
E.2 Breakpoints and the run, stop, cont and print Commands 1141
E.3 The print and set Commands 1145
E.4 Controlling Execution Using the step, step up and next Commands 1147
E.5 The watch Command 1150
E.6 The clear Command 1152
E.7 Wrap-Up 1154

Appendices on the Web 1157

Index 1159

Online Chapters and Appendices
Chapters 26–34 and Appendices F–N are PDF documents posted online at the book’s
Companion Website (located at www.pearsonhighered.com/deitel/). See the inside
front cover for information on accessing the Companion Website.

26 JavaFX GUI: Part 2

27 JavaFX Graphics and Multimedia

28 Networking

www.pearsonhighered.com/deitel/

Contents xxi

29 Java Persistence API (JPA)

30 JavaServer™ Faces Web Apps: Part 1

31 JavaServer™ Faces Web Apps: Part 2

32 REST-Based Web Services

33 (Optional) ATM Case Study, Part 1:
Object-Oriented Design with the UML

34 (Optional) ATM Case Study, Part 2:
Implementing an Object-Oriented Design

F Using the Java API Documentation

G Creating Documentation with javadoc
H Unicode®

I Formatted Output

J Number Systems

K Bit Manipulation

L Labeled break and continue Statements

M UML 2: Additional Diagram Types

N Design Patterns

This page intentionally left blank

I’ve been enamored with Java even prior to its 1.0 release in 1995, and have subsequently
been a Java developer, author, speaker, teacher and Oracle Java Technology Ambassador.
In this journey, it has been my privilege to call Paul Deitel a colleague, and to often lever-
age and recommend his Java How To Program book. In its many editions, this book has
proven to be a great text for college and professional courses that I and others have devel-
oped to teach the Java programming language.

One of the qualities that makes this book a great resource is its thorough and insightful
coverage of Java concepts, including those introduced recently in Java SE 8. Another useful
quality is its treatment of concepts and practices essential to effective software development.

As a long-time fan of this book, I’d like to point out some of the features of this tenth
edition about which I’m most excited:

• An ambitious new chapter on Java lambda expressions and streams. This chapter
starts out with a primer on functional programming, introducing Java lambda ex-
pressions and how to use streams to perform functional programming tasks on
collections.

• Although concurrency has been addressed since the first edition of the book, it is
increasingly important because of multi-core architectures. There are timing ex-
amples—using the new Date/Time API classes introduced in Java SE 8—in the
concurrency chapter that show the performance improvements with multi-core
over single-core.

• JavaFX is Java’s GUI/graphics/multimedia technology moving forward, so it is
nice to see a three-chapter treatment of JavaFX in the Deitel live-code pedagogic
style. One of these chapters is in the printed book and the other two are online.

Please join me in congratulating Paul and Harvey Deitel on their latest edition of a won-
derful resource for computer science students and software developers alike!

James L. Weaver
Java Technology Ambassador

Oracle Corporation

Foreword

This page intentionally left blank

“The chief merit of language is clearness…”
—Galen

Welcome to the Java programming language and Java How to Program, Tenth Edition, Late
Objects Version! This book, which we call “Java Love,” presents leading-edge computing
technologies for students, instructors and software developers. It’s appropriate for intro-
ductory academic and professional course sequences based on the curriculum recommen-
dations of the ACM and the IEEE, and for AP Computer Science exam preparation. If
you haven’t already done so, please read the back cover and inside back cover—these con-
cisely capture the essence of the book. In this Preface we provide more detail.

We focus on software engineering best practices. At the heart of the book is the Deitel
signature “live-code approach”—rather than using code snippets, we present concepts in
the context of complete working programs that run on recent versions of Windows®, OS
X® and Linux®. Each complete code example is accompanied by live sample executions.

Keeping in Touch with the Authors
As you read the book, if you have questions, send an e-mail to us at

and we’ll respond promptly. For updates on this book, visit

subscribe to the Deitel® Buzz Online newsletter at

and join the Deitel social networking communities on

• Facebook® (http://www.deitel.com/deitelfan)

• Twitter® (@deitel)

• Google+™ (http://google.com/+DeitelFan)

• YouTube® (http://youtube.com/DeitelTV)

• LinkedIn® (http://linkedin.com/company/deitel-&-associates)

Source Code and VideoNotes
All the source code is available at:

and at the book’s Companion Website (which also contains extensive VideoNotes):

deitel@deitel.com

http://www.deitel.com/books/jhtp10LOV

http://www.deitel.com/newsletter/subscribe.html

http://www.deitel.com/books/jhtp10LOV

http://www.pearsonhighered.com/deitel

Preface

http://www.deitel.com/deitelfan
http://google.com/+DeitelFan
http://youtube.com/DeitelTV
http://linkedin.com/company/deitel-&-associates
http://www.deitel.com/books/jhtp10LOV
http://www.deitel.com/newsletter/subscribe.html
http://www.deitel.com/books/jhtp10LOV
http://www.pearsonhighered.com/deitel

xxvi Preface

Motivation for Java How to Program, 10/e, Late Objects Version
There are several approaches to teaching first courses in Java programming. The two most
popular are the late objects approach and the early objects approach. To meet these diverse
needs, we have published two versions of this book:

• Java How to Program, 10/e, Late Objects Version, and

• Java How to Program, 10/e, Early Objects

The key difference between these two editions is the order in which topics are pre-
sented in Chapters 1–7. The books have identical content from Chapters 8 to 31.

Chapters 1–6 in Java How to Program, 10/e, Late Objects Version, form the core of a
pure-procedural programming CS1 course that covers operators, data types, input/output,
control statements, methods and arrays. Instructors who want to cover some key material
on strings early can present Sections 14.1–14.3 immediately after Chapter 6. Instructors
who want to cover some key material on files early can present Sections 15.1–15.4 imme-
diately after Chapter 6. Instructors who want to introduce some object-oriented program-
ming in a first course can include some or all of Chapters 7–11 (see below).

Modular Organization1

Java How to Program, 10/e, Late Objects Version, is appropriate for programming courses at
various levels, most notably CS 1 and CS 2 courses and introductory course sequences in
related disciplines. The book’s modular organization helps instructors plan their syllabi:

Introduction
• Chapter 1, Introduction to Computers, the Internet and Java

• Chapter 2, Introduction to Java Applications; Input/Output and Operators

Additional Programming Fundamentals
• Chapter 3, Control Statements: Part 1; Assignment, ++ and -- Operators

• Chapter 4, Control Statements: Part 2; Logical Operators

• Chapter 5, Methods

• Chapter 6, Arrays and ArrayLists

• Chapter 14, Strings, Characters and Regular Expressions

• Chapter 15, Files, Streams and Object Serialization

Object-Oriented Programming and Object-Oriented Design
• Chapter 7, Introduction to Classes and Objects

• Chapter 8, Classes and Objects: A Deeper Look

• Chapter 9, Object-Oriented Programming: Inheritance

• Chapter 10, Object-Oriented Programming: Polymorphism and Interfaces

• Chapter 11, Exception Handling: A Deeper Look

• (Online optional module) Chapter 33, ATM Case Study, Part 1: Object-Orient-
ed Design with the UML

1. The online chapters will be available on the book’s Companion Website for Fall 2014 classes.

New and Updated Features xxvii

• (Online optional module) Chapter 34, ATM Case Study Part 2: Implementing
an Object-Oriented Design

Swing Graphical User Interfaces and Java 2D Graphics
• Chapter 12, GUI Components: Part 1

• Chapter 13, Graphics and Java 2D

• Chapter 22, GUI Components: Part 2

Data Structures, Collections, Lambdas and Streams
• Chapter 16, Generic Collections

• Chapter 17, Java SE 8 Lambdas and Streams

• Chapter 18, Recursion

• Chapter 19, Searching, Sorting and Big O

• Chapter 20, Generic Classes and Methods

• Chapter 21, Custom Generic Data Structures

Concurrency; Networking
• Chapter 23, Concurrency

• (Online) Chapter 28, Networking

JavaFX Graphical User Interfaces, Graphics and Multimedia
• Chapter 25, JavaFX GUI: Part 1

• (Online) Chapter 26, JavaFX GUI: Part 2

• (Online) Chapter 27, JavaFX Graphics and Multimedia

Database-Driven Desktop and Web Development
• Chapter 24, Accessing Databases with JDBC

• (Online) Chapter 29, Java Persistence API (JPA)

• (Online) Chapter 30, JavaServer™ Faces Web Apps: Part 1

• (Online) Chapter 31, JavaServer™ Faces Web Apps: Part 2

• (Online) Chapter 32, REST-Based Web Services

New and Updated Features
Here are the updates we’ve made for Java How to Program, 10/e, Late Objects Version:

Java Standard Edition: Java SE 7 and the New Java SE 8
• Easy to use with Java SE 7 or Java SE 8. To meet the needs of our audiences, we

designed the book for college and professional courses based on Java SE 7, Java SE
8 or a mixture of both. The Java SE 8 features are covered in optional, easy-to-
include-or-omit sections. The new Java SE 8 capabilities can dramatically improve
the programming process. Figure 1 lists some new Java SE 8 features that we cover.

xxviii Preface

• Java SE 8 lambdas, streams, and interfaces with default and static methods.
The most significant new features in JavaSE 8 are lambdas and complementary
technologies, which we cover in detail in the optional Chapter 17 and optional
sections marked “Java SE 8” in later chapters. In Chapter 17, you’ll see that func-
tional programming with lambdas and streams can help you write programs fast-
er, more concisely, more simply, with fewer bugs and that are easier to parallelize
(to get performance improvements on multi-core systems) than programs written
with previous techniques. You’ll see that functional programming complements
object-oriented programming. After you read Chapter 17, you’ll be able to clev-
erly reimplement many of the Java SE 7 examples throughout the book (Fig. 2).

Java SE 8 features

Lambda expressions

Type-inference improvements

@FunctionalInterface annotation

Parallel array sorting

Bulk data operations for Java Collections—filter, map and reduce

Library enhancements to support lambdas (e.g., java.util.stream, java.util.function)

Date & Time API (java.time)

Java concurrency API improvements

static and default methods in interfaces

Functional interfaces—interfaces that define only one abstract method and can include
static and default methods

JavaFX enhancements

Fig. 1 | Some new Java SE 8 features.

Pre-Java-SE-8 topics Corresponding Java SE 8 discussions and examples

Chapter 6, Arrays and ArrayLists Sections 17.3––17.4 introduce basic lambda and
streams capabilities that process one-dimensional
arrays.

Chapter 10, Object-Oriented Pro-
gramming: Polymorphism and
Interfaces

Section 10.10 introduces the new Java SE 8 interface
features (default methods, static methods and the
concept of functional interfaces) that support func-
tional programming with lambdas and streams.

Chapters 12 and 22, GUI Compo-
nents: Part 1 and 2, respectively

Section 17.9 shows how to use a lambda to imple-
ment a Swing event-listener functional interface.

Chapter 14, Strings, Characters
and Regular Expressions

Section 17.5 shows how to use lambdas and streams
to process collections of String objects.

Fig. 2 | Java SE 8 lambdas and streams discussions and examples. (Part 1 of 2.)

New and Updated Features xxix

• Java SE 7’s try-with-resources statement and the AutoClosable Interface. Auto-
Closable objects reduce the likelihood of resource leaks when you use them with
the try-with-resources statement, which automatically closes the AutoClosable
objects. In this edition, we use try-with-resources and AutoClosable objects as
appropriate starting in Chapter 15, Files, Streams and Object Serialization.

• Java security. We audited our book against the CERT Oracle Secure Coding
Standard for Java as appropriate for an introductory textbook.

See the Secure Java Programming section of this Preface for more information
about CERT.

• Java NIO API. We updated the file-processing examples in Chapter 15 to use
features from the Java NIO (new IO) API.

• Java Documentation. Throughout the book, we provide links to Java documen-
tation where you can learn more about various topics that we present. For Java
SE 7 documentation, the links begin with

and for Java SE 8 documentation, the links begin with

These links could change when Oracle releases Java SE 8—possibly to links begin-
ning with

For any links that change after publication, we’ll post updates at

Swing and JavaFX GUI, Graphics and Multimedia
• Swing GUI and Java 2D graphics. Java’s Swing GUI is discussed in the optional

GUI and graphics sections in Chapters 2–6 and 8–10, and in Chapters 12 and

Chapter 15, Files, Streams and
Object Serialization

Section 17.7 shows how to use lambdas and streams
to process lines of text from a file.

Chapter 23, Concurrency Shows that functional programs are easier to parallel-
ize so that they can take advantage of multi-core archi-
tectures to enhance performance. Demonstrates
parallel stream processing. Shows that Arrays method
parallelSort improves performance on multi-core
architectures when sorting large arrays.

Chapter 25, JavaFX GUI: Part 1 Section 25.5.5 shows how to use a lambda to imple-
ment a JavaFX event-listener functional interface.

http://bit.ly/CERTOracleSecureJava

http://docs.oracle.com/javase/7/

http://download.java.net/jdk8/

http://docs.oracle.com/javase/8/

http://www.deitel.com/books/jhtp10LOV

Pre-Java-SE-8 topics Corresponding Java SE 8 discussions and examples

Fig. 2 | Java SE 8 lambdas and streams discussions and examples. (Part 2 of 2.)

http://bit.ly/CERTOracleSecureJava
http://www.deitel.com/books/jhtp10LOV
http://docs.oracle.com/javase/7/
http://download.java.net/jdk8/
http://docs.oracle.com/javase/8/

xxx Preface

22. Swing is now in maintenance mode—Oracle has stopped development and
will provide only bug fixes going forward, however it will remain part of Java and
is still widely used. Chapter 13 discusses Java 2D graphics.

• JavaFX GUI, graphics and multimedia. Java’s GUI, graphics and multimedia
API going forward is JavaFX. In Chapter 25, we use JavaFX 2.2 (released in
2012) with Java SE 7. Our online Chapters 26 and 27—located on the book’s
companion website (see the inside front cover of this book)—present additional
JavaFX GUI features and introduce JavaFX graphics and multimedia in the con-
text of Java FX 8 and Java SE 8. In Chapters 25–27 we use Scene Builder—a
drag-and-drop tool for creating JavaFX GUIs quickly and conveniently. It’s a
standalone tool that you can use separately or with any of the Java IDEs.

• Scalable GUI and graphics presentation. Instructors teaching introductory cours-
es have a broad choice of the amount of GUI, graphics and multimedia to cov-
er—from none at all, to optional introductory sections in the early chapters, to a
deep treatment of Swing GUI and Java 2D graphics in Chapters 12, 13 and 22,
and a deep treatment of JavaFX GUI, graphics and multimedia in Chapter 25
and online Chapters 26–27.

Concurrency
• Concurrency for optimal multi-core performance. In this edition, we were privi-

leged to have as a reviewer Brian Goetz, co-author of Java Concurrency in Practice
(Addison-Wesley). We updated Chapter 23, with Java SE 8 technology and idi-
om. We added a parallelSort vs. sort example that uses the Java SE 8 Date/
Time API to time each operation and demonstrate parallelSort’s better perfor-
mance on a multi-core system. We include a Java SE 8 parallel vs. sequential
stream processing example, again using the Date/Time API to show performance
improvements. Finally, we added a Java SE 8 CompletableFuture example that
demonstrates sequential and parallel execution of long-running calculations.

• SwingWorker class. We use class SwingWorker to create multithreaded user inter-
faces. In online Chapter 26, we show how JavaFX handles concurrency.

• Concurrency is challenging. Programming concurrent applications is difficult
and error-prone. There’s a great variety of concurrency features. We point out the
ones that most people should use and mention those that should be left to the
experts.

Getting Monetary Amounts Right
• Monetary amounts. In the early chapters, for convenience, we use type double to

represent monetary amounts. Due to the potential for incorrect monetary calcu-
lations with type double, class BigDecimal (which is a bit more complex) should
be used to represent monetary amounts. We demonstrate BigDecimal in
Chapters 8 and 25.

Object Technology
• Object-oriented programming and design. We use a late objects approach, cover-

ing programming fundamentals such as data types, variables, operators, control

New and Updated Features xxxi

stattements, methods and arrays in the early chapters. Then students develop
their first customized classes and objects in Chapter 7. [For courses that require
an early-objects approach, consider Java How to Program, 10/e, Early Objects.]

• Real-world case studies. The object-oriented programing presentation features
Account, Time, Employee, GradeBook and Card shuffling-and-dealing case studies.

• Inheritance, Interfaces, Polymorphism and Composition. We use a series of real-
world case studies to illustrate these OO concepts and explain situations in which
each is preferred in building industrial-strength applications.

• Exception handling. We integrate basic exception handling early in the book then
present a deeper treatment in Chapter 11. Exception handling is important for
building “mission-critical” and “business-critical” applications. Programmers
need to be concerned with, “What happens when the component I call on to do
a job experiences difficulty? How will that component signal that it had a prob-
lem?” To use a Java component, you need to know not only how that component
behaves when “things go well,” but also what exceptions that component
“throws” when “things go poorly.”

• Class Arrays and ArrayList. Chapter 6 covers class Arrays—which contains
methods for performing common array manipulations—and class ArrayList—
which implements a dynamically resizable array-like data structure. The chapter’s
rich selection of exercises includes a substantial project on building your own
computer through the technique of software simulation. The Chapter 21 exercis-
es include a follow-on project on building your own compiler that can compile
high-level language programs into machine language code that will execute on
your computer simulator.

• Optional Online Case Study: Developing an Object-Oriented Design and Java
Implementation of an ATM. Online Chapters 33–34 include an optional case
study on object-oriented design using the UML (Unified Modeling Lan-
guage™)—the industry-standard graphical language for modeling object-orient-
ed systems. We design and implement the software for a simple automated teller
machine (ATM). We analyze a typical requirements document that specifies the
system to be built. We determine the classes needed to implement that system,
the attributes the classes need to have, the behaviors the classes need to exhibit
and specify how the classes must interact with one another to meet the system re-
quirements. From the design we produce a complete Java implementation. Stu-
dents often report having a “light-bulb moment”—the case study helps them “tie
it all together” and really understand object orientation.

Data Structures and Generic Collections
• Data structures presentation. We begin with generic class ArrayList in Chapter 6.

Our later data structures discussions (Chapters 16–21) provide a deeper treatment
of generic collections—showing how to use the built-in collections of the Java API.
We discuss recursion, which is important for implementing tree-like, data-structure
classes. We discuss popular searching and sorting algorithms for manipulating the
contents of collections, and provide a friendly introduction to Big O—a means of
describing how hard an algorithm might have to work to solve a problem. We then

xxxii Preface

show how to implement generic methods and classes, and custom generic data struc-
tures (this is intended for computer-science majors—most programmers should use
the pre-built generic collections). Lambdas and streams (introduced in Chapter 17)
are especially useful for working with generic collections.

Database
• JDBC. Chapter 24 covers JDBC and uses the Java DB database management sys-

tem. The chapter introduces Structured Query Language (SQL) and features an
OO case study on developing a database-driven address book that demonstrates
PreparedStatements.

• Java Persistence API. The new online Chapter 29 covers the Java Persistence API
(JPA)—a standard for object relational mapping (ORM) that uses JDBC “under
the hood.” ORM tools can look at a database’s schema and generate a set of class-
es that enabled you to interact with a database without having to use JDBC and
SQL directly. This speeds database-application development, reduces errors and
produces more portable code.

Web Application Development
• Java Server Faces (JSF). Online Chapters 30–31 have been updated to introduce

the latest JavaServer Faces (JSF) technology for building web-based applications.
Chapter 30 includes examples on building web application GUIs, validating
forms and session tracking. Chapter 31 discusses data-driven, Ajax-enabled JSF
applications—the chapter features a database-driven multitier web address book
that allows users to add and search for contacts.

• Web services. Chapter 32 now concentrates on creating and consuming REST-
based web services. The vast majority of today’s web services now use REST.

Secure Java Programming
It’s difficult to build industrial-strength systems that stand up to attacks from viruses, worms,
and other forms of “malware.” Today, via the Internet, such attacks can be instantaneous and
global in scope. Building security into software from the beginning of the development cycle
can greatly reduce vulnerabilities. We incorporate various secure Java coding practices (as ap-
propriate for an introductory textbook) into our discussions and code examples.

The CERT® Coordination Center (www.cert.org) was created to analyze and
respond promptly to attacks. CERT—the Computer Emergency Response Team—is a
government-funded organization within the Carnegie Mellon University Software Engi-
neering Institute™. CERT publishes and promotes secure coding standards for various
popular programming languages to help software developers implement industrial-
strength systems that avoid the programming practices which leave systems open to attack.

We’d like to thank Robert C. Seacord, Secure Coding Manager at CERT and an
adjunct professor in the Carnegie Mellon University School of Computer Science. Mr. Sea-
cord was a technical reviewer for our book, C How to Program, 7/e, where he scrutinized our
C programs from a security standpoint, recommending that we adhere to the CERT C Secure
Coding Standard. This experience influenced our coding practices in C++ How to Program,
9/e and Java How to Program, 10/e, Late Objects Version as well.

www.cert.org

Optional GUI and Graphics Case Study xxxiii

Optional GUI and Graphics Case Study
Students enjoy building GUI and graphics applications. For courses that introduce GUI
and graphics early, we’ve integrated an optional 10-segment introduction to creating
graphics and Swing-based graphical user interfaces (GUIs). The goal of this case study is
to create a simple polymorphic drawing application in which the user can select a shape to
draw, select the characteristics of the shape (such as its color) and use the mouse to draw
the shape. The case study builds gradually toward that goal, with the reader implementing
polymorphic drawing in Chapter 10, adding an event-driven GUI in Chapter 12 and en-
hancing the drawing capabilities in Chapter 13 with Java 2D.

• Section 2.9—Using Dialog Boxes

• Section 3.14—Creating Simple Drawings

• Section 4.10—Drawing Rectangles and Ovals

• Section 5.13—Colors and Filled Shapes

• Section 6.14—Drawing Arcs

• Section 8.16—Using Objects with Graphics

• Section 9.7—Displaying Text and Images Using Labels

• Section 10.11—Drawing with Polymorphism

• Exercise 12.17—Expanding the Interface

• Exercise 13.31—Adding Java2D

Teaching Approach
Java How to Program, 10/e, Late Objects Version contains hundreds of complete working
examples. We stress program clarity and concentrate on building well-engineered soft-
ware.

VideoNotes. The Companion Website includes extensive VideoNotes in which co-author
Paul Deitel explains in detail most of the programs in the book’s core chapters. Students
like viewing the VideoNotes for reinforcement of core concepts and for additional in-
sights.

Syntax Shading. For readability, we syntax shade all the Java code, similar to the way most
Java integrated-development environments and code editors syntax color code. Our syn-
tax-shading conventions are as follows:

Code Highlighting. We place gray rectangles around key code segments.

Using Fonts for Emphasis. We place the key terms and the index’s page reference for each
defining occurrence in bold text for easier reference. We emphasize on-screen components
in the bold Helvetica font (e.g., the File menu) and emphasize Java program text in the Lu-
cida font (for example, int x = 5;).

comments appear in light gray like this
keywords appear bold black like this
constants and literal values appear in bold dark gray like this
all other code appears in black like this

xxxiv Preface

Web Access. All of the source-code examples can be downloaded from:

Objectives. The opening quotes are followed by a list of chapter objectives.

Illustrations/Figures. Abundant tables, line drawings, UML diagrams, programs and pro-
gram outputs are included.

Programming Tips. We include programming tips to help you focus on important aspects
of program development. These tips and practices represent the best we’ve gleaned from a
combined seven decades of programming and teaching experience.

Summary Bullets. We present a section-by-section bullet-list summary of the chapter. For
ease of reference, we include the page number of each key term’s defining occurrence in
the text.

Self-Review Exercises and Answers. Extensive self-review exercises and answers are includ-
ed for self study. All of the exercises in the optional ATM case study are fully solved.

http://www.deitel.com/books/jhtp10LOV
http://www.pearsonhighered.com/deitel

Good Programming Practice
The Good Programming Practices call attention to techniques that will help you pro-
duce programs that are clearer, more understandable and more maintainable.

Common Programming Error
Pointing out these Common Programming Errors reduces the likelihood that you’ll
make them.

Error-Prevention Tip
These tips contain suggestions for exposing bugs and removing them from your programs;
many describe aspects of Java that prevent bugs from getting into programs in the first place.

Performance Tip
These tips highlight opportunities for making your programs run faster or minimizing the
amount of memory that they occupy.

Portability Tip
The Portability Tips help you write code that will run on a variety of platforms.

Software Engineering Observation
The Software Engineering Observations highlight architectural and design issues that
affect the construction of software systems, especially large-scale systems.

Look-and-Feel Observation
The Look-and-Feel Observations highlight graphical-user-interface conventions. These
observations help you design attractive, user-friendly graphical user interfaces that con-
form to industry norms.

http://www.deitel.com/books/jhtp10LOV
http://www.pearsonhighered.com/deitel

Software Used in Java How to Program, 10/e, Late Objects Version xxxv

Exercises. The chapter exercises include:

• simple recall of important terminology and concepts

• What’s wrong with this code?

• What does this code do?

• writing individual statements and small portions of methods and classes

• writing complete methods, classes and programs

• major projects

• in many chapters, Making a Difference exercises that encourage you to use com-
puters and the Internet to research and solve significant social problems.

Exercises that are purely SE 8 are marked as such. Check out our Programming Projects
Resource Center for lots of additional exercise and project possibilities (www.deitel.com/
ProgrammingProjects/).

Index. We’ve included an extensive index. Defining occurrences of key terms are high-
lighted with a bold page number. The print book index mentions only those terms used
in the print book. The online chapters index includes all the print book terms and the on-
line chapter terms.

Software Used in Java How to Program, 10/e, Late Objects Version
All the software you’ll need for this book is available free for download from the Internet.
See the Before You Begin section that follows this Preface for links to each download.

We wrote most of the examples in Java How to Program, 10/e, Late Objects Version,
using the free Java Standard Edition Development Kit (JDK) 7. For the optional Java SE
8 modules, we used the OpenJDK’s early access version of JDK 8. In Chapter 25 and sev-
eral online chapters, we also used the Netbeans IDE. See the Before You Begin section that
follows this Preface for more information.

Instructor Supplements
The following supplements are available to qualified instructors only through Pearson
Education’s Instructor Resource Center (www.pearsonhighered.com/irc):

• PowerPoint® slides containing all the code and figures in the text, plus bulleted
items that summarize key points.

• Test Item File of multiple-choice questions (approximately two per book sec-
tion).

• Solutions Manual with solutions to the vast majority of the end-of-chapter exer-
cises. Check the IRC to determine the exercises for which we provide solutions.

Please do not write to us requesting access to the Pearson Instructor’s Resource Center
which contains the book’s instructor supplements, including the exercise solutions. Ac-
cess is limited strictly to college instructors teaching from the book. Instructors may ob-
tain access only through their Pearson representatives. Solutions are not provided for
“project” exercises.

www.deitel.com/ProgrammingProjects/
www.deitel.com/ProgrammingProjects/
www.pearsonhighered.com/irc

xxxvi Preface

If you’re not a registered faculty member, contact your Pearson representative or visit
www.pearsonhighered.com/educator/replocator/.

Acknowledgments
We’d like to thank Abbey Deitel and Barbara Deitel for long hours devoted to this project.
We’re fortunate to have worked on this project with the dedicated team of publishing pro-
fessionals at Pearson. We appreciate the guidance, wisdom and energy of Tracy Johnson,
Executive Editor, Computer Science. Tracy and her team handle all of our academic text-
books. Carole Snyder recruited the book’s academic reviewers and managed the review
process. Bob Engelhardt managed the book’s publication. We selected the cover art and
Laura Gardner designed the cover.

Reviewers
We wish to acknowledge the efforts of our recent editions reviewers—a distinguished
group of academics, Oracle Java team members, Oracle Java Champions and other indus-
try professionals. They scrutinized the text and the programs and provided countless sug-
gestions for improving the presentation.

Tenth Edition reviewers: Lance Andersen (Oracle Corporation), Dr. Danny Coward
(Oracle Corporation), Brian Goetz (Oracle Corporation), Evan Golub (University of
Maryland), Dr. Huiwei Guan (Professor, Department of Computer & Information Sci-
ence, North Shore Community College), Manfred Riem (Java Champion), Simon Ritter
(Oracle Corporation), Robert C. Seacord (CERT, Software Engineering Institute, Carn-
egie Mellon University), Khallai Taylor (Assistant Professor, Triton College and Adjunct
Professor, Lonestar College—Kingwood), Jorge Vargas (Yumbling and a Java Champion),
Johan Vos (LodgON, co-author of Pro JavaFX 2 and Oracle Java Champion) and James
L. Weaver (Oracle Corporation and co-author of Pro JavaFX 2).

Previous editions reviewers: Soundararajan Angusamy (Sun Microsystems), Joseph
Bowbeer (Consultant), William E. Duncan (Louisiana State University), Diana Franklin
(University of California, Santa Barbara), Edward F. Gehringer (North Carolina State
University), Ric Heishman (George Mason University), Dr. Heinz Kabutz (JavaSpecial-
ists.eu), Patty Kraft (San Diego State University), Lawrence Premkumar (Sun Microsys-
tems), Tim Margush (University of Akron), Sue McFarland Metzger (Villanova
University), Shyamal Mitra (The University of Texas at Austin), Peter Pilgrim (Consul-
tant), Manjeet Rege, Ph.D. (Rochester Institute of Technology), Susan Rodger (Duke
University), Amr Sabry (Indiana University), José Antonio González Seco (Parliament of
Andalusia), Sang Shin (Sun Microsystems), S. Sivakumar (Astra Infotech Private Lim-
ited), Raghavan “Rags” Srinivas (Intuit), Monica Sweat (Georgia Tech), Vinod Varma
(Astra Infotech Private Limited) and Alexander Zuev (Sun Microsystems).

A Special Thank You to Brian Goetz
We were privileged to have Brian Goetz, Oracle’s Java Language Architect and Specifica-
tion Lead for Java SE 8’s Project Lambda, and co-author of Java Concurrency in Practice,
do a detailed full-book review. He thoroughly scrutinized every chapter, providing ex-
tremely helpful insights and constructive comments. Any remaining faults in the book are
our own.

www.pearsonhighered.com/educator/replocator/

About the Authors xxxvii

Well, there you have it! As you read the book, we’d appreciate your comments, criti-
cisms, corrections and suggestions for improvement. Please address all correspondence to:

We’ll respond promptly. We hope you enjoy working with Java How to Program, 10/e,
Late Objects Version as much as we enjoyed writing it!

Paul and Harvey Deitel

About the Authors
Paul Deitel, CEO and Chief Technical
Officer of Deitel & Associates, Inc., is a
graduate of MIT, where he studied Infor-
mation Technology. He holds the Java
Certified Programmer and Java Certified
Developer designations, and is an Oracle
Java Champion. Through Deitel & Asso-

ciates, Inc., he has delivered hundreds of programming courses worldwide to clients, in-
cluding Cisco, IBM, Siemens, Sun Microsystems, Dell, Fidelity, NASA at the Kennedy
Space Center, the National Severe Storm Laboratory, White Sands Missile Range, Rogue
Wave Software, Boeing, SunGard Higher Education, Nortel Networks, Puma, iRobot,
Invensys and many more. He and his co-author, Dr. Harvey M. Deitel, are the world’s
best-selling programming-language textbook/professional book/video authors.

Dr. Harvey Deitel, Chairman and Chief Strategy Officer of Deitel & Associates, Inc.,
has over 50 years of experience in the computer field. Dr. Deitel earned B.S. and M.S.
degrees in Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston
University. He has extensive college teaching experience, including earning tenure and
serving as the Chairman of the Computer Science Department at Boston College before
founding Deitel & Associates, Inc., in 1991 with his son, Paul. The Deitels’ publications
have earned international recognition, with translations published in Japanese, German,
Russian, Spanish, French, Polish, Italian, Simplified Chinese, Traditional Chinese,
Korean, Portuguese, Greek, Urdu and Turkish. Dr. Deitel has delivered hundreds of pro-
gramming courses to corporate, academic, government and military clients.

About Deitel® & Associates, Inc.
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate training organization, specializing in computer pro-
gramming languages, object technology, mobile app development and Internet and web
software technology. The company’s training clients include many of the world’s largest
companies, government agencies, branches of the military and academic institutions. The
company offers instructor-led training courses delivered at client sites worldwide on major
programming languages and platforms, including Java™, Android app development,
Objective-C and iOS app development, C++, C, Visual C#®, Visual Basic®, Visual C++®,
Python®, object technology, Internet and web programming and a growing list of addi-
tional programming and software development courses.

deitel@deitel.com

xxxviii Preface

Through its 39-year publishing partnership with Pearson/Prentice Hall, Deitel &
Associates, Inc., publishes leading-edge programming textbooks and professional books in
print and a wide range of e-book formats, and LiveLessons video courses. Deitel & Associ-
ates, Inc. and the authors can be reached at:

To learn more about Deitel’s Dive-Into® Series Corporate Training curriculum, visit:

To request a proposal for worldwide on-site, instructor-led training at your organization,
e-mail deitel@deitel.com.

Individuals wishing to purchase Deitel books and LiveLessons video training can do so
through www.deitel.com. Bulk orders by corporations, the government, the military and
academic institutions should be placed directly with Pearson. For more information, visit

deitel@deitel.com

http://www.deitel.com/training

http://www.informit.com/store/sales.aspx

www.deitel.com
http://www.deitel.com/training
http://www.informit.com/store/sales.aspx

This section contains information you should review before using this book. Any updates
to the information presented here will be posted at:

In addition, we provide Dive-Into® videos (which will be available in time for Fall 2014
classes) that demonstrate the instructions in this Before You Begin section.

Font and Naming Conventions
We use fonts to distinguish between on-screen components (such as menu names and
menu items) and Java code or commands. Our convention is to emphasize on-screen com-
ponents in a sans-serif bold Helvetica font (for example, File menu) and to emphasize Java
code and commands in a sans-serif Lucida font (for example, System.out.println()).

Software Used in the Book
All the software you’ll need for this book is available free for download from the web. With
the exception of the examples that are specific to Java SE 8, all of the examples were tested
with the Java SE 7 and Java SE 8 Java Standard Edition Development Kits (JDKs).

Java Standard Edition Development Kit 7 (JDK 7)
JDK 7 for Windows, OS X and Linux platforms is available from:

Java Standard Edition Development Kit (JDK) 8
At the time of this publication, the near-final version of JDK 8 for Windows, OS X and
Linux platforms was available from:

Once JDK 8 is released as final, it will be available from:

JDK Installation Instructions
After downloading the JDK installer, be sure to carefully follow the JDK installation in-
structions for your platform at:

Though these instructions are for JDK 7, they also apply to JDK 8—you’ll need to update
the JDK version number in any version-specific instructions.

http://www.deitel.com/books/jhtp10LOV

http://www.oracle.com/technetwork/java/javase/downloads/index.html

https://jdk8.java.net/download.html

http://www.oracle.com/technetwork/java/javase/downloads/index.html

http://docs.oracle.com/javase/7/docs/webnotes/install/index.html

Before
You Begin

http://www.deitel.com/books/jhtp10LOV
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://docs.oracle.com/javase/7/docs/webnotes/install/index.html
https://jdk8.java.net/download.html

xl Before You Begin

Setting the PATH Environment Variable
The PATH environment variable on your computer designates which directories the com-
puter searches when looking for applications, such as the applications that enable you to
compile and run your Java applications (called javac and java, respectively). Carefully fol-
low the installation instructions for Java on your platform to ensure that you set the PATH envi-
ronment variable correctly. The steps for setting environment variables differ by operating
system and sometimes by operating system version (e.g., Windows 7 vs. Windows 8). In-
structions for various platforms are listed at:

If you do not set the PATH variable correctly on Windows and some Linux installations,
when you use the JDK’s tools, you’ll receive a message like:

In this case, go back to the installation instructions for setting the PATH and recheck your
steps. If you’ve downloaded a newer version of the JDK, you may need to change the name
of the JDK’s installation directory in the PATH variable.

JDK Installation Directory and the bin Subdirectory
The JDK’s installation directory varies by platform. The directories listed below are for
Oracle’s JDK 7 update 51:

• 32-bit JDK on Windows:
C:\Program Files (x86)\Java\jdk1.7.0_51

• 64-bit JDK on Windows:
C:\Program Files\Java\jdk1.7.0_51

• Mac OS X:
/Library/Java/JavaVirtualMachines/jdk1.7.0_51.jdk/Contents/Home

• Ubuntu Linux:
/usr/lib/jvm/java-7-oracle

Depending on your platform, the JDK installation folder’s name might differ if you’re us-
ing a different update of JDK 7 or using JDK 8. For Linux, the install location depends
on the installer you use and possibly the version of Linux that you use. We used Ubuntu
Linux. The PATH environment variable must point to the JDK installation directory’s bin
subdirectory.

When setting the PATH, be sure to use the proper JDK-installation-directory name for
the specific version of the JDK you installed—as newer JDK releases become available, the
JDK-installation-directory name changes to include an update version number. For
example, at the time of this writing, the most recent JDK 7 release was update 51. For this
version, the JDK-installation-directory name ends with "_51".

Setting the CLASSPATH Environment Variable
If you attempt to run a Java program and receive a message like

http://www.java.com/en/download/help/path.xml

'java' is not recognized as an internal or external command,
operable program or batch file.

Exception in thread "main" java.lang.NoClassDefFoundError: YourClass

http://www.java.com/en/download/help/path.xml

Setting the JAVA_HOME Environment Variable xli

then your system has a CLASSPATH environment variable that must be modified. To fix the
preceding error, follow the steps in setting the PATH environment variable, to locate the
CLASSPATH variable, then edit the variable’s value to include the local directory—typically
represented as a dot (.). On Windows add

at the beginning of the CLASSPATH’s value (with no spaces before or after these characters).
On other platforms, replace the semicolon with the appropriate path separator charac-
ters—typically a colon (:).

Setting the JAVA_HOME Environment Variable
The Java DB database software that you’ll use in Chapter 24 and several online chapters
requires you to set the JAVA_HOME environment variable to your JDK’s installation direc-
tory. The same steps you used to set the PATH may also be used to set other environment
variables, such as JAVA_HOME.

Java Integrated Development Environments (IDEs)
There are many Java integrated development environments that you can use for Java pro-
gramming. For this reason, we used only the JDK command-line tools for most of the book’s
examples. We provide Dive-Into® videos (which will be available in time for Fall 2014 class-
es) that show how to download, install and use three popular IDEs—NetBeans, Eclipse and
IntelliJ IDEA. We use NetBeans in Chapter 25 and several of the book’s online chapters.

NetBeans Downloads
You can download the JDK/NetBeans bundle from:

The NetBeans version that’s bundled with the JDK is for Java SE development. The on-
line JavaServer Faces (JSF) chapters and web services chapter use the Java Enterprise Edi-
tion (Java EE) version of NetBeans, which you can download from:

This version supports both Java SE and Java EE development.

Eclipse Downloads
You can download the Eclipse IDE from:

For Java SE development choose the Eclipse IDE for Java Developers. For Java Enterprise
Edition (Java EE) development (such as JSF and web services), choose the Eclipse IDE for
Java EE Developers—this version supports both Java SE and Java EE development.

IntelliJ IDEA Community Edition Downloads
You can download the free IntelliJ IDEA Community Edition from:

The free version supports only Java SE development.

.;

http://www.oracle.com/technetwork/java/javase/downloads/index.html

https://netbeans.org/downloads/

https://www.eclipse.org/downloads/

http://www.jetbrains.com/idea/download/index.html

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.jetbrains.com/idea/download/index.html
https://netbeans.org/downloads/
https://www.eclipse.org/downloads/

xlii Before You Begin

Obtaining the Code Examples
The examples for Java How to Program, 10/e, Late Objects Version are available for down-
load at

under the heading Download Code Examples and Other Premium Content. The examples
are also available from

When you download the ZIP archive file, write down the location where you choose to
save it on your computer.

Extract the contents of examples.zip using a ZIP extraction tool such as 7-Zip
(www.7-zip.org), WinZip (www.winzip.com) or the built-in capabilities of your operating
system. Instructions throughout the book assume that the examples are located at:

• C:\examples on Windows

• your user account home folder’s examples subfolder on Linux

• your Documents folders examples subfolder on Mac OS X

Java’s Nimbus Look-and-Feel
Java comes bundled with a cross-platform look-and-feel known as Nimbus. For programs
with Swing graphical user interfaces (e.g., Chapters 12 and 22), we configured our test
computers to use Nimbus as the default look-and-feel.

To set Nimbus as the default for all Java applications, you must create a text file
named swing.properties in the lib folder of both your JDK installation folder and your
JRE installation folder. Place the following line of code in the file:

For more information on locating these folders visit http://docs.oracle.com/javase/
7/docs/webnotes/install/index.html. [Note: In addition to the standalone JRE, there’s
a JRE nested in your JDK’s installation folder. If you’re using an IDE that depends on the
JDK (e.g., NetBeans), you may also need to place the swing.properties file in the nested
jre folder’s lib folder.]

You’re now ready to begin your Java studies with Java How to Program, 10/e, Late
Objects Version. We hope you enjoy the book!

http://www.deitel.com/books/jhtp10LOV/

http://www.pearsonhighered.com/deitel

swing.defaultlaf=com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel

www.7-zip.org
www.winzip.com
http://docs.oracle.com/javase/7/docs/webnotes/install/index.html
http://docs.oracle.com/javase/7/docs/webnotes/install/index.html
http://www.deitel.com/books/jhtp10LOV/
http://www.pearsonhighered.com/deitel

1Introduction to Computers,
the Internet and Java

Man is still the most
extraordinary computer of all.
—John F. Kennedy

Good design is good business.
—Thomas J. Watson, Founder of IBM

O b j e c t i v e s
In this chapter you’ll:

� Learn about exciting recent
developments in the
computer field.

� Learn computer hardware,
software and networking
basics.

� Understand the data
hierarchy.

� Understand the different
types of programming
languages.

� Understand the importance
of Java and other leading
programming languages.

� Understand object-oriented
programming basics.

� Learn the importance of the
Internet and the web.

� Learn a typical Java program-
development environment.

� Test-drive a Java application.

� Learn some key recent
software technologies.

� See how to keep up-to-date
with information
technologies.

