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I’ve been enamored with Java even prior to its 1.0 release in 1995, and have subsequently
been a Java developer, author, speaker, teacher and Oracle Java Technology Ambassador.
In this journey, it has been my privilege to call Paul Deitel a colleague, and to often lever-
age and recommend his Java How To Program book. In its many editions, this book has
proven to be a great text for college and professional courses that I and others have devel-
oped to teach the Java programming language.

One of the qualities that makes this book a great resource is its thorough and insightful
coverage of Java concepts, including those introduced recently in Java SE 8. Another useful
quality is its treatment of concepts and practices essential to effective software development.

As a long-time fan of this book, I’d like to point out some of the features of this tenth
edition about which I’m most excited:

• An ambitious new chapter on Java lambda expressions and streams. This chapter
starts out with a primer on functional programming, introducing Java lambda ex-
pressions and how to use streams to perform functional programming tasks on
collections.

• Although concurrency has been addressed since the first edition of the book, it is
increasingly important because of multi-core architectures. There are timing ex-
amples—using the new Date/Time API classes introduced in Java SE 8—in the
concurrency chapter that show the performance improvements with multi-core
over single-core.

• JavaFX is Java’s GUI/graphics/multimedia technology moving forward, so it is
nice to see a three-chapter treatment of JavaFX in the Deitel live-code pedagogic
style. One of these chapters is in the printed book and the other two are online.

Please join me in congratulating Paul and Harvey Deitel on their latest edition of a won-
derful resource for computer science students and software developers alike!

James L. Weaver
Java Technology Ambassador

Oracle Corporation

Foreword
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“The chief merit of language is clearness…”
—Galen

Welcome to the Java programming language and Java How to Program, Tenth Edition, Late
Objects Version! This book, which we call “Java Love,” presents leading-edge computing
technologies for students, instructors and software developers. It’s appropriate for intro-
ductory academic and professional course sequences based on the curriculum recommen-
dations of the ACM and the IEEE, and for AP Computer Science exam preparation. If
you haven’t already done so, please read the back cover and inside back cover—these con-
cisely capture the essence of the book. In this Preface we provide more detail.

We focus on software engineering best practices. At the heart of the book is the Deitel
signature “live-code approach”—rather than using code snippets, we present concepts in
the context of complete working programs that run on recent versions of Windows®, OS
X® and Linux®. Each complete code example is accompanied by live sample executions.

Keeping in Touch with the Authors
As you read the book, if you have questions, send an e-mail to us at

and we’ll respond promptly. For updates on this book, visit

subscribe to the Deitel® Buzz Online newsletter at

and join the Deitel social networking communities on

• Facebook® (http://www.deitel.com/deitelfan)

• Twitter® (@deitel)

• Google+™ (http://google.com/+DeitelFan)

• YouTube® (http://youtube.com/DeitelTV)

• LinkedIn® (http://linkedin.com/company/deitel-&-associates)

Source Code and VideoNotes
All the source code is available at:

and at the book’s Companion Website (which also contains extensive VideoNotes):

deitel@deitel.com

http://www.deitel.com/books/jhtp10LOV

http://www.deitel.com/newsletter/subscribe.html

http://www.deitel.com/books/jhtp10LOV

http://www.pearsonhighered.com/deitel
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Motivation for Java How to Program, 10/e, Late Objects Version
There are several approaches to teaching first courses in Java programming. The two most
popular are the late objects approach and the early objects approach. To meet these diverse
needs, we have published two versions of this book:

• Java How to Program, 10/e, Late Objects Version, and

• Java How to Program, 10/e, Early Objects

The key difference between these two editions is the order in which topics are pre-
sented in Chapters 1–7. The books have identical content from Chapters 8 to 31.

Chapters 1–6 in Java How to Program, 10/e, Late Objects Version, form the core of a
pure-procedural programming CS1 course that covers operators, data types, input/output,
control statements, methods and arrays. Instructors who want to cover some key material
on strings early can present Sections 14.1–14.3 immediately after Chapter 6. Instructors
who want to cover some key material on files early can present Sections 15.1–15.4 imme-
diately after Chapter 6. Instructors who want to introduce some object-oriented program-
ming in a first course can include some or all of Chapters 7–11 (see below).

Modular Organization1

Java How to Program, 10/e, Late Objects Version, is appropriate for programming courses at
various levels, most notably CS 1 and CS 2 courses and introductory course sequences in
related disciplines. The book’s modular organization helps instructors plan their syllabi:

Introduction
• Chapter 1, Introduction to Computers, the Internet and Java

• Chapter 2, Introduction to Java Applications; Input/Output and Operators

Additional Programming Fundamentals
• Chapter 3, Control Statements: Part 1; Assignment, ++ and -- Operators

• Chapter 4, Control Statements: Part 2; Logical Operators

• Chapter 5, Methods

• Chapter 6, Arrays and ArrayLists

• Chapter 14, Strings, Characters and Regular Expressions

• Chapter 15, Files, Streams and Object Serialization

Object-Oriented Programming and Object-Oriented Design
• Chapter 7, Introduction to Classes and Objects

• Chapter 8, Classes and Objects: A Deeper Look

• Chapter 9, Object-Oriented Programming: Inheritance

• Chapter 10, Object-Oriented Programming: Polymorphism and Interfaces

• Chapter 11, Exception Handling: A Deeper Look

• (Online optional module) Chapter 33, ATM Case Study, Part 1: Object-Orient-
ed Design with the UML

1. The online chapters will be available on the book’s Companion Website for Fall 2014 classes.
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• (Online optional module) Chapter 34, ATM Case Study Part 2: Implementing
an Object-Oriented Design

Swing Graphical User Interfaces and Java 2D Graphics
• Chapter 12, GUI Components: Part 1

• Chapter 13, Graphics and Java 2D

• Chapter 22, GUI Components: Part 2

Data Structures, Collections, Lambdas and Streams
• Chapter 16, Generic Collections

• Chapter 17, Java SE 8 Lambdas and Streams

• Chapter 18, Recursion

• Chapter 19, Searching, Sorting and Big O

• Chapter 20, Generic Classes and Methods

• Chapter 21, Custom Generic Data Structures

Concurrency; Networking
• Chapter 23, Concurrency

• (Online) Chapter 28, Networking

JavaFX Graphical User Interfaces, Graphics and Multimedia
• Chapter 25, JavaFX GUI: Part 1

• (Online) Chapter 26, JavaFX GUI: Part 2

• (Online) Chapter 27, JavaFX Graphics and Multimedia

Database-Driven Desktop and Web Development
• Chapter 24, Accessing Databases with JDBC

• (Online) Chapter 29, Java Persistence API (JPA)

• (Online) Chapter 30, JavaServer™ Faces Web Apps: Part 1

• (Online) Chapter 31, JavaServer™ Faces Web Apps: Part 2

• (Online) Chapter 32, REST-Based Web Services

New and Updated Features
Here are the updates we’ve made for Java How to Program, 10/e, Late Objects Version:

Java Standard Edition: Java SE 7 and the New Java SE 8
• Easy to use with Java SE 7 or Java SE 8. To meet the needs of our audiences, we

designed the book for college and professional courses based on Java SE 7, Java SE
8 or a mixture of both. The Java SE 8 features are covered in optional, easy-to-
include-or-omit sections. The new Java SE 8 capabilities can dramatically improve
the programming process. Figure 1 lists some new Java SE 8 features that we cover.
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• Java SE 8 lambdas, streams, and interfaces with default and static methods.
The most significant new features in JavaSE 8 are lambdas and complementary
technologies, which we cover in detail in the optional Chapter 17 and optional
sections marked “Java SE 8” in later chapters. In Chapter 17, you’ll see that func-
tional programming with lambdas and streams can help you write programs fast-
er, more concisely, more simply, with fewer bugs and that are easier to parallelize
(to get performance improvements on multi-core systems) than programs written
with previous techniques. You’ll see that functional programming complements
object-oriented programming. After you read Chapter 17, you’ll be able to clev-
erly reimplement many of the Java SE 7 examples throughout the book (Fig. 2).

Java SE 8 features

Lambda expressions

Type-inference improvements

@FunctionalInterface annotation

Parallel array sorting

Bulk data operations for Java Collections—filter, map and reduce

Library enhancements to support lambdas (e.g., java.util.stream, java.util.function)

Date & Time API (java.time)

Java concurrency API improvements

static and default methods in interfaces

Functional interfaces—interfaces that define only one abstract method and can include
static and default methods

JavaFX enhancements

Fig. 1 | Some new Java SE 8 features.

Pre-Java-SE-8 topics Corresponding Java SE 8 discussions and examples

Chapter 6, Arrays and ArrayLists Sections 17.3––17.4 introduce basic lambda and
streams capabilities that process one-dimensional
arrays.

Chapter 10, Object-Oriented Pro-
gramming: Polymorphism and
Interfaces

Section 10.10 introduces the new Java SE 8 interface
features (default methods, static methods and the
concept of functional interfaces) that support func-
tional programming with lambdas and streams.

Chapters 12 and 22, GUI Compo-
nents: Part 1 and 2, respectively

Section 17.9 shows how to use a lambda to imple-
ment a Swing event-listener functional interface.

Chapter 14, Strings, Characters
and Regular Expressions

Section 17.5 shows how to use lambdas and streams
to process collections of String objects.

Fig. 2 | Java SE 8 lambdas and streams discussions and examples. (Part 1 of 2.)
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• Java SE 7’s try-with-resources statement and the AutoClosable Interface. Auto-
Closable objects reduce the likelihood of resource leaks when you use them with
the try-with-resources statement, which automatically closes the AutoClosable
objects. In this edition, we use try-with-resources and AutoClosable objects as
appropriate starting in Chapter 15, Files, Streams and Object Serialization.

• Java security. We audited our book against the CERT Oracle Secure Coding
Standard for Java as appropriate for an introductory textbook.

See the Secure Java Programming section of this Preface for more information
about CERT.

• Java NIO API. We updated the file-processing examples in Chapter 15 to use
features from the Java NIO (new IO) API.

• Java Documentation. Throughout the book, we provide links to Java documen-
tation where you can learn more about various topics that we present. For Java
SE 7 documentation, the links begin with

and for Java SE 8 documentation, the links begin with

These links could change when Oracle releases Java SE 8—possibly to links begin-
ning with

For any links that change after publication, we’ll post updates at

Swing and JavaFX GUI, Graphics and Multimedia
• Swing GUI and Java 2D graphics. Java’s Swing GUI is discussed in the optional

GUI and graphics sections in Chapters 2–6 and 8–10, and in Chapters 12 and

Chapter 15, Files, Streams and
Object Serialization

Section 17.7 shows how to use lambdas and streams
to process lines of text from a file.

Chapter 23, Concurrency Shows that functional programs are easier to parallel-
ize so that they can take advantage of multi-core archi-
tectures to enhance performance. Demonstrates
parallel stream processing. Shows that Arrays method
parallelSort improves performance on multi-core
architectures when sorting large arrays.

Chapter 25, JavaFX GUI: Part 1 Section 25.5.5 shows how to use a lambda to imple-
ment a JavaFX event-listener functional interface.

http://bit.ly/CERTOracleSecureJava

http://docs.oracle.com/javase/7/

http://download.java.net/jdk8/

http://docs.oracle.com/javase/8/

http://www.deitel.com/books/jhtp10LOV

Pre-Java-SE-8 topics Corresponding Java SE 8 discussions and examples

Fig. 2 | Java SE 8 lambdas and streams discussions and examples. (Part 2 of 2.)

http://bit.ly/CERTOracleSecureJava
http://www.deitel.com/books/jhtp10LOV
http://docs.oracle.com/javase/7/
http://download.java.net/jdk8/
http://docs.oracle.com/javase/8/
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22. Swing is now in maintenance mode—Oracle has stopped development and
will provide only bug fixes going forward, however it will remain part of Java and
is still widely used. Chapter 13 discusses Java 2D graphics.

• JavaFX GUI, graphics and multimedia. Java’s GUI, graphics and multimedia
API going forward is JavaFX. In Chapter 25, we use JavaFX 2.2 (released in
2012) with Java SE 7. Our online Chapters 26 and 27—located on the book’s
companion website (see the inside front cover of this book)—present additional
JavaFX GUI features and introduce JavaFX graphics and multimedia in the con-
text of Java FX 8 and Java SE 8. In Chapters 25–27 we use Scene Builder—a
drag-and-drop tool for creating JavaFX GUIs quickly and conveniently. It’s a
standalone tool that you can use separately or with any of the Java IDEs.

• Scalable GUI and graphics presentation. Instructors teaching introductory cours-
es have a broad choice of the amount of GUI, graphics and multimedia to cov-
er—from none at all, to optional introductory sections in the early chapters, to a
deep treatment of Swing GUI and Java 2D graphics in Chapters 12, 13 and 22,
and a deep treatment of JavaFX GUI, graphics and multimedia in Chapter 25
and online Chapters 26–27.

Concurrency
• Concurrency for optimal multi-core performance. In this edition, we were privi-

leged to have as a reviewer Brian Goetz, co-author of Java Concurrency in Practice
(Addison-Wesley). We updated Chapter 23, with Java SE 8 technology and idi-
om. We added a parallelSort vs. sort example that uses the Java SE 8 Date/
Time API to time each operation and demonstrate parallelSort’s better perfor-
mance on a multi-core system. We include a Java SE 8 parallel vs. sequential
stream processing example, again using the Date/Time API to show performance
improvements. Finally, we added a Java SE 8 CompletableFuture example that
demonstrates sequential and parallel execution of long-running calculations.

• SwingWorker class. We use class SwingWorker to create multithreaded user inter-
faces. In online Chapter 26, we show how JavaFX handles concurrency.

• Concurrency is challenging. Programming concurrent applications is difficult
and error-prone. There’s a great variety of concurrency features. We point out the
ones that most people should use and mention those that should be left to the
experts.

Getting Monetary Amounts Right
• Monetary amounts. In the early chapters, for convenience, we use type double to

represent monetary amounts. Due to the potential for incorrect monetary calcu-
lations with type double, class BigDecimal (which is a bit more complex) should
be used to represent monetary amounts. We demonstrate BigDecimal in
Chapters 8 and 25.

Object Technology
• Object-oriented programming and design. We use a late objects approach, cover-

ing programming fundamentals such as data types, variables, operators, control
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stattements, methods and arrays in the early chapters. Then students develop
their first customized classes and objects in Chapter 7. [For courses that require
an early-objects approach, consider Java How to Program, 10/e, Early Objects.]

• Real-world case studies. The object-oriented programing presentation features
Account, Time, Employee, GradeBook and Card shuffling-and-dealing case studies.

• Inheritance, Interfaces, Polymorphism and Composition. We use a series of real-
world case studies to illustrate these OO concepts and explain situations in which
each is preferred in building industrial-strength applications.

• Exception handling. We integrate basic exception handling early in the book then
present a deeper treatment in Chapter 11. Exception handling is important for
building “mission-critical” and “business-critical” applications. Programmers
need to be concerned with, “What happens when the component I call on to do
a job experiences difficulty? How will that component signal that it had a prob-
lem?” To use a Java component, you need to know not only how that component
behaves when “things go well,” but also what exceptions that component
“throws” when “things go poorly.”

• Class Arrays and ArrayList. Chapter 6 covers class Arrays—which contains
methods for performing common array manipulations—and class ArrayList—
which implements a dynamically resizable array-like data structure. The chapter’s
rich selection of exercises includes a substantial project on building your own
computer through the technique of software simulation. The Chapter 21 exercis-
es include a follow-on project on building your own compiler that can compile
high-level language programs into machine language code that will execute on
your computer simulator.

• Optional Online Case Study: Developing an Object-Oriented Design and Java
Implementation of an ATM. Online Chapters 33–34 include an optional case
study on object-oriented design using the UML (Unified Modeling Lan-
guage™)—the industry-standard graphical language for modeling object-orient-
ed systems. We design and implement the software for a simple automated teller
machine (ATM). We analyze a typical requirements document that specifies the
system to be built. We determine the classes needed to implement that system,
the attributes the classes need to have, the behaviors the classes need to exhibit
and specify how the classes must interact with one another to meet the system re-
quirements. From the design we produce a complete Java implementation. Stu-
dents often report having a “light-bulb moment”—the case study helps them “tie
it all together” and really understand object orientation.

Data Structures and Generic Collections
• Data structures presentation. We begin with generic class ArrayList in Chapter 6.

Our later data structures discussions (Chapters 16–21) provide a deeper treatment
of generic collections—showing how to use the built-in collections of the Java API.
We discuss recursion, which is important for implementing tree-like, data-structure
classes. We discuss popular searching and sorting algorithms for manipulating the
contents of collections, and provide a friendly introduction to Big O—a means of
describing how hard an algorithm might have to work to solve a problem. We then
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show how to implement generic methods and classes, and custom generic data struc-
tures (this is intended for computer-science majors—most programmers should use
the pre-built generic collections). Lambdas and streams (introduced in Chapter 17)
are especially useful for working with generic collections.

Database
• JDBC. Chapter 24 covers JDBC and uses the Java DB database management sys-

tem. The chapter introduces Structured Query Language (SQL) and features an
OO case study on developing a database-driven address book that demonstrates
PreparedStatements.

• Java Persistence API. The new online Chapter 29 covers the Java Persistence API
(JPA)—a standard for object relational mapping (ORM) that uses JDBC “under
the hood.” ORM tools can look at a database’s schema and generate a set of class-
es that enabled you to interact with a database without having to use JDBC and
SQL directly. This speeds database-application development, reduces errors and
produces more portable code.

Web Application Development
• Java Server Faces (JSF). Online Chapters 30–31 have been updated to introduce

the latest JavaServer Faces (JSF) technology for building web-based applications.
Chapter 30 includes examples on building web application GUIs, validating
forms and session tracking. Chapter 31 discusses data-driven, Ajax-enabled JSF
applications—the chapter features a database-driven multitier web address book
that allows users to add and search for contacts.

• Web services. Chapter 32 now concentrates on creating and consuming REST-
based web services. The vast majority of today’s web services now use REST.

Secure Java Programming
It’s difficult to build industrial-strength systems that stand up to attacks from viruses, worms,
and other forms of “malware.” Today, via the Internet, such attacks can be instantaneous and
global in scope. Building security into software from the beginning of the development cycle
can greatly reduce vulnerabilities. We incorporate various secure Java coding practices (as ap-
propriate for an introductory textbook) into our discussions and code examples.

The CERT® Coordination Center (www.cert.org) was created to analyze and
respond promptly to attacks. CERT—the Computer Emergency Response Team—is a
government-funded organization within the Carnegie Mellon University Software Engi-
neering Institute™. CERT publishes and promotes secure coding standards for various
popular programming languages to help software developers implement industrial-
strength systems that avoid the programming practices which leave systems open to attack.

We’d like to thank Robert C. Seacord, Secure Coding Manager at CERT and an
adjunct professor in the Carnegie Mellon University School of Computer Science. Mr. Sea-
cord was a technical reviewer for our book, C How to Program, 7/e, where he scrutinized our
C programs from a security standpoint, recommending that we adhere to the CERT C Secure
Coding Standard. This experience influenced our coding practices in C++ How to Program,
9/e and Java How to Program, 10/e, Late Objects Version as well.

www.cert.org
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Optional GUI and Graphics Case Study
Students enjoy building GUI and graphics applications. For courses that introduce GUI
and graphics early, we’ve integrated an optional 10-segment introduction to creating
graphics and Swing-based graphical user interfaces (GUIs). The goal of this case study is
to create a simple polymorphic drawing application in which the user can select a shape to
draw, select the characteristics of the shape (such as its color) and use the mouse to draw
the shape. The case study builds gradually toward that goal, with the reader implementing
polymorphic drawing in Chapter 10, adding an event-driven GUI in Chapter 12 and en-
hancing the drawing capabilities in Chapter 13 with Java 2D.

• Section 2.9—Using Dialog Boxes

• Section 3.14—Creating Simple Drawings

• Section 4.10—Drawing Rectangles and Ovals

• Section 5.13—Colors and Filled Shapes

• Section 6.14—Drawing Arcs

• Section 8.16—Using Objects with Graphics

• Section 9.7—Displaying Text and Images Using Labels

• Section 10.11—Drawing with Polymorphism

• Exercise 12.17—Expanding the Interface

• Exercise 13.31—Adding Java2D

Teaching Approach
Java How to Program, 10/e, Late Objects Version contains hundreds of complete working
examples. We stress program clarity and concentrate on building well-engineered soft-
ware.

VideoNotes. The Companion Website includes extensive VideoNotes in which co-author
Paul Deitel explains in detail most of the programs in the book’s core chapters. Students
like viewing the VideoNotes for reinforcement of core concepts and for additional in-
sights.

Syntax Shading. For readability, we syntax shade all the Java code, similar to the way most
Java integrated-development environments and code editors syntax color code. Our syn-
tax-shading conventions are as follows:

Code Highlighting. We place gray rectangles around key code segments.

Using Fonts for Emphasis. We place the key terms and the index’s page reference for each
defining occurrence in bold text for easier reference. We emphasize on-screen components
in the bold Helvetica font (e.g., the File menu) and emphasize Java program text in the Lu-
cida font (for example, int x = 5;).

comments appear in light gray like this
keywords appear bold black like this
constants and literal values appear in bold dark gray like this
all other code appears in black like this
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Web Access. All of the source-code examples can be downloaded from:

Objectives. The opening quotes are followed by a list of chapter objectives.

Illustrations/Figures. Abundant tables, line drawings, UML diagrams, programs and pro-
gram outputs are included.

Programming Tips. We include programming tips to help you focus on important aspects
of program development. These tips and practices represent the best we’ve gleaned from a
combined seven decades of programming and teaching experience.

Summary Bullets. We present a section-by-section bullet-list summary of the chapter. For
ease of reference, we include the page number of each key term’s defining occurrence in
the text.

Self-Review Exercises and Answers. Extensive self-review exercises and answers are includ-
ed for self study. All of the exercises in the optional ATM case study are fully solved.

http://www.deitel.com/books/jhtp10LOV
http://www.pearsonhighered.com/deitel

Good Programming Practice
The Good Programming Practices call attention to techniques that will help you pro-
duce programs that are clearer, more understandable and more maintainable.

Common Programming Error
Pointing out these Common Programming Errors reduces the likelihood that you’ll
make them.

Error-Prevention Tip
These tips contain suggestions for exposing bugs and removing them from your programs;
many describe aspects of Java that prevent bugs from getting into programs in the first place.

Performance Tip
These tips highlight opportunities for making your programs run faster or minimizing the
amount of memory that they occupy.

Portability Tip
The Portability Tips help you write code that will run on a variety of platforms.

Software Engineering Observation
The Software Engineering Observations highlight architectural and design issues that
affect the construction of software systems, especially large-scale systems.

Look-and-Feel Observation
The Look-and-Feel Observations highlight graphical-user-interface conventions. These
observations help you design attractive, user-friendly graphical user interfaces that con-
form to industry norms.

http://www.deitel.com/books/jhtp10LOV
http://www.pearsonhighered.com/deitel
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Exercises. The chapter exercises include:

• simple recall of important terminology and concepts

• What’s wrong with this code?

• What does this code do?

• writing individual statements and small portions of methods and classes

• writing complete methods, classes and programs

• major projects

• in many chapters, Making a Difference exercises that encourage you to use com-
puters and the Internet to research and solve significant social problems.

Exercises that are purely SE 8 are marked as such. Check out our Programming Projects
Resource Center for lots of additional exercise and project possibilities (www.deitel.com/
ProgrammingProjects/).

Index. We’ve included an extensive index. Defining occurrences of key terms are high-
lighted with a bold page number. The print book index mentions only those terms used
in the print book. The online chapters index includes all the print book terms and the on-
line chapter terms.

Software Used in Java How to Program, 10/e, Late Objects Version
All the software you’ll need for this book is available free for download from the Internet.
See the Before You Begin section that follows this Preface for links to each download.

We wrote most of the examples in Java How to Program, 10/e, Late Objects Version,
using the free Java Standard Edition Development Kit (JDK) 7. For the optional Java SE
8 modules, we used the OpenJDK’s early access version of JDK 8. In Chapter 25 and sev-
eral online chapters, we also used the Netbeans IDE. See the Before You Begin section that
follows this Preface for more information.

Instructor Supplements
The following supplements are available to qualified instructors only through Pearson
Education’s Instructor Resource Center (www.pearsonhighered.com/irc):

• PowerPoint® slides containing all the code and figures in the text, plus bulleted
items that summarize key points.

• Test Item File of multiple-choice questions (approximately two per book sec-
tion).

• Solutions Manual with solutions to the vast majority of the end-of-chapter exer-
cises. Check the IRC to determine the exercises for which we provide solutions.

Please do not write to us requesting access to the Pearson Instructor’s Resource Center
which contains the book’s instructor supplements, including the exercise solutions. Ac-
cess is limited strictly to college instructors teaching from the book. Instructors may ob-
tain access only through their Pearson representatives. Solutions are not provided for
“project” exercises.

www.deitel.com/ProgrammingProjects/
www.deitel.com/ProgrammingProjects/
www.pearsonhighered.com/irc
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If you’re not a registered faculty member, contact your Pearson representative or visit
www.pearsonhighered.com/educator/replocator/.

Acknowledgments
We’d like to thank Abbey Deitel and Barbara Deitel for long hours devoted to this project.
We’re fortunate to have worked on this project with the dedicated team of publishing pro-
fessionals at Pearson. We appreciate the guidance, wisdom and energy of Tracy Johnson,
Executive Editor, Computer Science. Tracy and her team handle all of our academic text-
books. Carole Snyder recruited the book’s academic reviewers and managed the review
process. Bob Engelhardt managed the book’s publication. We selected the cover art and
Laura Gardner designed the cover.

Reviewers
We wish to acknowledge the efforts of our recent editions reviewers—a distinguished
group of academics, Oracle Java team members, Oracle Java Champions and other indus-
try professionals. They scrutinized the text and the programs and provided countless sug-
gestions for improving the presentation.

Tenth Edition reviewers: Lance Andersen (Oracle Corporation), Dr. Danny Coward
(Oracle Corporation), Brian Goetz (Oracle Corporation), Evan Golub (University of
Maryland), Dr. Huiwei Guan (Professor, Department of Computer & Information Sci-
ence, North Shore Community College), Manfred Riem (Java Champion), Simon Ritter
(Oracle Corporation), Robert C. Seacord (CERT, Software Engineering Institute, Carn-
egie Mellon University), Khallai Taylor (Assistant Professor, Triton College and Adjunct
Professor, Lonestar College—Kingwood), Jorge Vargas (Yumbling and a Java Champion),
Johan Vos (LodgON, co-author of Pro JavaFX 2 and Oracle Java Champion) and James
L. Weaver (Oracle Corporation and co-author of Pro JavaFX 2).

Previous editions reviewers: Soundararajan Angusamy (Sun Microsystems), Joseph
Bowbeer (Consultant), William E. Duncan (Louisiana State University), Diana Franklin
(University of California, Santa Barbara), Edward F. Gehringer (North Carolina State
University), Ric Heishman (George Mason University), Dr. Heinz Kabutz (JavaSpecial-
ists.eu), Patty Kraft (San Diego State University), Lawrence Premkumar (Sun Microsys-
tems), Tim Margush (University of Akron), Sue McFarland Metzger (Villanova
University), Shyamal Mitra (The University of Texas at Austin), Peter Pilgrim (Consul-
tant), Manjeet Rege, Ph.D. (Rochester Institute of Technology), Susan Rodger (Duke
University), Amr Sabry (Indiana University), José Antonio González Seco (Parliament of
Andalusia), Sang Shin (Sun Microsystems), S. Sivakumar (Astra Infotech Private Lim-
ited), Raghavan “Rags” Srinivas (Intuit), Monica Sweat (Georgia Tech), Vinod Varma
(Astra Infotech Private Limited) and Alexander Zuev (Sun Microsystems).

A Special Thank You to Brian Goetz
We were privileged to have Brian Goetz, Oracle’s Java Language Architect and Specifica-
tion Lead for Java SE 8’s Project Lambda, and co-author of Java Concurrency in Practice,
do a detailed full-book review. He thoroughly scrutinized every chapter, providing ex-
tremely helpful insights and constructive comments. Any remaining faults in the book are
our own.

www.pearsonhighered.com/educator/replocator/


About the Authors xxxvii

Well, there you have it! As you read the book, we’d appreciate your comments, criti-
cisms, corrections and suggestions for improvement. Please address all correspondence to:

We’ll respond promptly. We hope you enjoy working with Java How to Program, 10/e,
Late Objects Version as much as we enjoyed writing it!

Paul and Harvey Deitel

About the Authors
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Through its 39-year publishing partnership with Pearson/Prentice Hall, Deitel &
Associates, Inc., publishes leading-edge programming textbooks and professional books in
print and a wide range of e-book formats, and LiveLessons video courses. Deitel & Associ-
ates, Inc. and the authors can be reached at:

To learn more about Deitel’s Dive-Into® Series Corporate Training curriculum, visit:

To request a proposal for worldwide on-site, instructor-led training at your organization,
e-mail deitel@deitel.com.

Individuals wishing to purchase Deitel books and LiveLessons video training can do so
through www.deitel.com. Bulk orders by corporations, the government, the military and
academic institutions should be placed directly with Pearson. For more information, visit

deitel@deitel.com

http://www.deitel.com/training

http://www.informit.com/store/sales.aspx

www.deitel.com
http://www.deitel.com/training
http://www.informit.com/store/sales.aspx


This section contains information you should review before using this book. Any updates
to the information presented here will be posted at:

In addition, we provide Dive-Into® videos (which will be available in time for Fall 2014
classes) that demonstrate the instructions in this Before You Begin section.

Font and Naming Conventions
We use fonts to distinguish between on-screen components (such as menu names and
menu items) and Java code or commands. Our convention is to emphasize on-screen com-
ponents in a sans-serif bold Helvetica font (for example, File menu) and to emphasize Java
code and commands in a sans-serif Lucida font (for example, System.out.println()).

Software Used in the Book
All the software you’ll need for this book is available free for download from the web. With
the exception of the examples that are specific to Java SE 8, all of the examples were tested
with the Java SE 7 and Java SE 8 Java Standard Edition Development Kits (JDKs).

Java Standard Edition Development Kit 7 (JDK 7)
JDK 7 for Windows, OS X and Linux platforms is available from:

Java Standard Edition Development Kit (JDK) 8
At the time of this publication, the near-final version of JDK 8 for Windows, OS X and
Linux platforms was available from:

Once JDK 8 is released as final, it will be available from:

JDK Installation Instructions
After downloading the JDK installer, be sure to carefully follow the JDK installation in-
structions for your platform at:

Though these instructions are for JDK 7, they also apply to JDK 8—you’ll need to update
the JDK version number in any version-specific instructions.

http://www.deitel.com/books/jhtp10LOV

http://www.oracle.com/technetwork/java/javase/downloads/index.html

https://jdk8.java.net/download.html

http://www.oracle.com/technetwork/java/javase/downloads/index.html

http://docs.oracle.com/javase/7/docs/webnotes/install/index.html

Before
You Begin

http://www.deitel.com/books/jhtp10LOV
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://docs.oracle.com/javase/7/docs/webnotes/install/index.html
https://jdk8.java.net/download.html
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Setting the PATH Environment Variable
The PATH environment variable on your computer designates which directories the com-
puter searches when looking for applications, such as the applications that enable you to
compile and run your Java applications (called javac and java, respectively). Carefully fol-
low the installation instructions for Java on your platform to ensure that you set the PATH envi-
ronment variable correctly. The steps for setting environment variables differ by operating
system and sometimes by operating system version (e.g., Windows 7 vs. Windows 8). In-
structions for various platforms are listed at:

If you do not set the PATH variable correctly on Windows and some Linux installations,
when you use the JDK’s tools, you’ll receive a message like:

In this case, go back to the installation instructions for setting the PATH and recheck your
steps. If you’ve downloaded a newer version of the JDK, you may need to change the name
of the JDK’s installation directory in the PATH variable.

JDK Installation Directory and the bin Subdirectory
The JDK’s installation directory varies by platform. The directories listed below are for
Oracle’s JDK 7 update 51:

• 32-bit JDK on Windows:
C:\Program Files (x86)\Java\jdk1.7.0_51

• 64-bit JDK on Windows:
C:\Program Files\Java\jdk1.7.0_51

• Mac OS X:
/Library/Java/JavaVirtualMachines/jdk1.7.0_51.jdk/Contents/Home

• Ubuntu Linux:
/usr/lib/jvm/java-7-oracle

Depending on your platform, the JDK installation folder’s name might differ if you’re us-
ing a different update of JDK 7 or using JDK 8. For Linux, the install location depends
on the installer you use and possibly the version of Linux that you use. We used Ubuntu
Linux. The PATH environment variable must point to the JDK installation directory’s bin
subdirectory.

When setting the PATH, be sure to use the proper JDK-installation-directory name for
the specific version of the JDK you installed—as newer JDK releases become available, the
JDK-installation-directory name changes to include an update version number. For
example, at the time of this writing, the most recent JDK 7 release was update 51. For this
version, the JDK-installation-directory name ends with "_51".

Setting the CLASSPATH Environment Variable
If you attempt to run a Java program and receive a message like

http://www.java.com/en/download/help/path.xml

'java' is not recognized as an internal or external command,
operable program or batch file.

Exception in thread "main" java.lang.NoClassDefFoundError: YourClass

http://www.java.com/en/download/help/path.xml
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then your system has a CLASSPATH environment variable that must be modified. To fix the
preceding error, follow the steps in setting the PATH environment variable, to locate the
CLASSPATH variable, then edit the variable’s value to include the local directory—typically
represented as a dot (.). On Windows add

at the beginning of the CLASSPATH’s value (with no spaces before or after these characters).
On other platforms, replace the semicolon with the appropriate path separator charac-
ters—typically a colon (:).

Setting the JAVA_HOME Environment Variable
The Java DB database software that you’ll use in Chapter 24 and several online chapters
requires you to set the JAVA_HOME environment variable to your JDK’s installation direc-
tory. The same steps you used to set the PATH may also be used to set other environment
variables, such as JAVA_HOME.

Java Integrated Development Environments (IDEs)
There are many Java integrated development environments that you can use for Java pro-
gramming. For this reason, we used only the JDK command-line tools for most of the book’s
examples. We provide Dive-Into® videos (which will be available in time for Fall 2014 class-
es) that show how to download, install and use three popular IDEs—NetBeans, Eclipse and
IntelliJ IDEA. We use NetBeans in Chapter 25 and several of the book’s online chapters.

NetBeans Downloads
You can download the JDK/NetBeans bundle from:

The NetBeans version that’s bundled with the JDK is for Java SE development. The on-
line JavaServer Faces (JSF) chapters and web services chapter use the Java Enterprise Edi-
tion (Java EE) version of NetBeans, which you can download from:

This version supports both Java SE and Java EE development.

Eclipse Downloads
You can download the Eclipse IDE from:

For Java SE development choose the Eclipse IDE for Java Developers. For Java Enterprise
Edition (Java EE) development (such as JSF and web services), choose the Eclipse IDE for
Java EE Developers—this version supports both Java SE and Java EE development.

IntelliJ IDEA Community Edition Downloads
You can download the free IntelliJ IDEA Community Edition from:

The free version supports only Java SE development.

.;

http://www.oracle.com/technetwork/java/javase/downloads/index.html

https://netbeans.org/downloads/

https://www.eclipse.org/downloads/

http://www.jetbrains.com/idea/download/index.html

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.jetbrains.com/idea/download/index.html
https://netbeans.org/downloads/
https://www.eclipse.org/downloads/
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Obtaining the Code Examples
The examples for Java How to Program, 10/e, Late Objects Version are available for down-
load at

under the heading Download Code Examples and Other Premium Content. The examples
are also available from

When you download the ZIP archive file, write down the location where you choose to
save it on your computer.

Extract the contents of examples.zip using a ZIP extraction tool such as 7-Zip
(www.7-zip.org), WinZip (www.winzip.com) or the built-in capabilities of your operating
system. Instructions throughout the book assume that the examples are located at:

• C:\examples on Windows

• your user account home folder’s examples subfolder on Linux

• your Documents folders examples subfolder on Mac OS X

Java’s Nimbus Look-and-Feel
Java comes bundled with a cross-platform look-and-feel known as Nimbus. For programs
with Swing graphical user interfaces (e.g., Chapters 12 and 22), we configured our test
computers to use Nimbus as the default look-and-feel.

To set Nimbus as the default for all Java applications, you must create a text file
named swing.properties in the lib folder of both your JDK installation folder and your
JRE installation folder. Place the following line of code in the file:

For more information on locating these folders visit http://docs.oracle.com/javase/
7/docs/webnotes/install/index.html. [Note: In addition to the standalone JRE, there’s
a JRE nested in your JDK’s installation folder. If you’re using an IDE that depends on the
JDK (e.g., NetBeans), you may also need to place the swing.properties file in the nested
jre folder’s lib folder.]

You’re now ready to begin your Java studies with Java How to Program, 10/e, Late
Objects Version. We hope you enjoy the book!

http://www.deitel.com/books/jhtp10LOV/

http://www.pearsonhighered.com/deitel

swing.defaultlaf=com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel

www.7-zip.org
www.winzip.com
http://docs.oracle.com/javase/7/docs/webnotes/install/index.html
http://docs.oracle.com/javase/7/docs/webnotes/install/index.html
http://www.deitel.com/books/jhtp10LOV/
http://www.pearsonhighered.com/deitel


1Introduction to Computers,
the Internet and Java

Man is still the most
extraordinary computer of all.
—John F. Kennedy

Good design is good business.
—Thomas J. Watson, Founder of IBM

O b j e c t i v e s
In this chapter you’ll:

� Learn about exciting recent
developments in the
computer field.

� Learn computer hardware,
software and networking
basics.

� Understand the data
hierarchy.

� Understand the different
types of programming
languages.

� Understand the importance
of Java and other leading
programming languages.

� Understand object-oriented
programming basics.

� Learn the importance of the
Internet and the web.

� Learn a typical Java program-
development environment.

� Test-drive a Java application.

� Learn some key recent
software technologies.

� See how to keep up-to-date
with information
technologies.




